DRL26C树木生长测量仪

DRL26C树木生长测量仪

参考价: 面议

具体成交价以合同协议为准
2023-02-27 10:20:55
5074
属性:
产地类别:进口;应用领域:环保,农业;
>
产品属性
产地类别
进口
应用领域
环保,农业
关闭
北京易科泰生态技术有限公司

北京易科泰生态技术有限公司

高级会员15
收藏

组合推荐相似产品

产品简介

DRL26C 树木生长监测仪用于监测树干的生长微变化,使树的生长与水分关系的研究变得更容易和更准确。传感器为不锈钢和防紫外线塑料制作,坚固耐用,适合长期监测,无须外接电池或太阳能板,内置锂电池和数据采集器,可记录50000个数据,通过红外数据输出。仪器具有较高的分辨率,可精确测量1微米茎杆的微变化,为研究树木在白天,夜晚等气候条件差异下的生长提供重要数据依据。

详细介绍

      DRL26C 树木生长监测仪用于监测树干的生长微变化,使树的生长与水分关系的研究变得更容易和更准确。传感器为不锈钢和防紫外线塑料制作,坚固耐用,适合长期监测,无须外接电池或太阳能板,内置锂电池和数据采集器,可记录50000个数据,通过红外数据输出。仪器具有较高的分辨率,可精确测量1微米茎杆的微变化,为研究树木在白天,夜晚等气候条件差异下的生长提供重要数据依据。

主要优点:

适用于直径大于8cm的任何树干;

传统机械与电子技术相结合,测量更准确;

精度较高,分辨率1微米;

无损安装固定;

导出数据格式为TXTExcel

 

技术参数:

量程:64mm生长量变化监测

分辨率:0.001mm

误差:量程2%

作用力:15-20N

工作温度:-30-60℃

工作湿度:0-100%

温度传感器精度:±2℃

重量:300g

数据容量:50000个数据(每小时记录1次则可自动记录4年)

采样间隔:10min-24hrs

电池寿命:1hr间隔5年;10mins间隔3年;待机5.5

通讯方式:无线红外传输

2.png


植物生理生态专业数据下载分析软件,可进行数据下载、数据在线观测、柱状图、数据修复、统计分析(如每小时平均、每日平均、总计、最小值、最大值、数据相关分析、回归分析)与图表展示及系统设置等

3.png


可选配MicroLog三通道土壤监测仪,实时、连续、原位监测土壤水分、温度、水势的变化

4.png


推荐系统:树木生理生态系统,同时对多棵树木进行实时在线监测,采集记录树木生长、树皮温度(阴面和阳面)、树干茎流等三个生理指标的数据


5.png

6.png


 

产地:捷克


参考文献

1.Augustaitis, A. (2021). Intra-Annual Variation of Stem Circumference of Tree Species Prevailing in Hemi-Boreal Forest on Hourly Scale in Relation to Meteorology, Solar Radiation and Surface Ozone Fluxes. Atmosphere 12, 1017.

2.Bužková, R., Acosta, M., Dařenová, E., Pokorný, R., and Pavelka, M. (2015). Environmental factors influencing the relationship between stem CO2 efflux and sap flow. Trees 29, 333–343.

3.Dolezal, J., Kopecky, M., Dvorsky, M., Macek, M., Rehakova, K., Capkova, K., Borovec, J., Schweingruber, F., Liancourt, P., and Altman, J. (2019). Sink limitation of plant growth determines tree line in the arid Himalayas. Functional Ecology 33, 553–565.

4.Forner, A., Valladares, F., Bonal, D., Granier, A., Grossiord, C., and Aranda, I. (2018). Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: the importance of timing. Tree Physiology 38, 1127–1137.

5.Jamnická, G., Konôpková, A., Fleischer, P., Kurjak, D., Petrík, P., Petek-Petrik, A., Húdoková, H., Homolová, Z., Ježík, M., and Ditmarová, Ľ. (2020). Physiological vitality of Norway spruce (Picea abies L.) stands along an altitudinal gradient in Tatra National Park. Central European Forestry Journal 66.

6.Ježík, M., Blaženec, M., Mezei, P., Sedmáková, D., Sedmák, R., Fleischer, P., Fleischer, P., Bošeľa, M., Kurjak, D., Střelcová, K., et al. (2021). Influence of weather and day length on intra-seasonal growth of Norway spruce (Picea abies) and European beech (Fagus sylvatica) in a natural montane forest. Can. J. For. Res. 51, 1799–1810.

7.Leštianska, A., Fleischer, P., Merganičová, K., Fleischer, P., and Střelcová, K. (2020a). Influence of Warmer and Drier Environmental Conditions on Species-Specific Stem Circumference Dynamics and Water Status of Conifers in Submontane Zone of Central Slovakia. Water 12, 2945.

8.Leštianska, A., Fleischer, P., Fleischer, P., Merganičová, K., and Střelcová, K. (2020b). Interspecific variation in growth and tree water status of conifers under water-limited conditions. Journal of Hydrology and Hydromechanics 68, 368–381.

9.Maicher, V., Sáfián, S., Murkwe, M., Delabye, S., Przybyłowicz, Ł., Potocký, P., Kobe, I.N., Janeček, Š., Mertens, J.E.J., Fokam, E.B., et al. (2020). Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. Journal of Biogeography 47, 342–354.

10.Nalevanková, P., Ježík, M., Sitková, Z., Vido, J., Leštianska, A., and Střelcová, K. (2018). Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology 11, e1958.

11.Obojes, N., Meurer, A., Newesely, C., Tasser, E., Oberhuber, W., Mayr, S., and Tappeiner, U. (2018). Water stress limits transpiration and growth of European larch up to the lower subalpine belt in an inner‐alpine dry valley. The New Phytologist 220, 460.

12.Qian-Wen, J.I., Cheng-Yang, Z., Lei, Z., and Fa-Xu, Z. (2020). Stem radial growth dynamics of Pinus sylvestris var. mongolica and their relationship with meteorological factor in Saihanba, Hebei, China. Chinese Journal of Plant Ecology 44, 257.

13.Raffelsbauer, V., Spannl, S., Peña, K., Pucha-Cofrep, D., Steppe, K., and Bräuning, A. (2019). Tree Circumference Changes and Species-Specific Growth Recovery After Extreme Dry Events in a Montane Rainforest in Southern Ecuador. Frontiers in Plant Science 10.

14.Řeháková, K., Čapková, K., Altman, J., Dančák, M., Majeský, Ľ., and Doležal, J. (2021). Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient. Ecosystems 1–17.

15.Szymczak, S., Häusser, M., Garel, E., Santoni, S., Huneau, F., Knerr, I., Trachte, K., Bendix, J., and Bräuning, A. (2020). How Do Mediterranean Pine Trees Respond to Drought and Precipitation Events along an Elevation Gradient? Forests 11, 758.

16.Vospernik, S., Nothdurft, A., and Mehtätalo, L. (2020). Seasonal, medium-term and daily patterns of tree diameter growth in response to climate. Forestry: An International Journal of Forest Research 93, 133–149.

17.Winters, G., Otieno, D., Cohen, S., Bogner, C., Ragowloski, G., Paudel, I., and Klein, T. (2018). Tree growth and water-use in hyper-arid Acacia occurs during the hottest and driest season. Oecologia 188, 695–705. 

 


上一篇:SPECIMONE 高光谱成像自动在线分选系统 下一篇:PA66水处理设备:如何高效净化您的水质?
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :