MC1000 8通道藻类培养与在线监测系统

MC1000 8通道藻类培养与在线监测系统

参考价: 面议

具体成交价以合同协议为准
2022-05-01 13:09:44
5234
属性:
产地类别:进口;价格区间:面议;仪器种类:实验室型;应用领域:环保,化工,生物产业,农业,能源;多通道培养:8;LED光源:标配冷白光LED,8个通道光源可定制;光密度在线监测:OD680/OD720;温度控制:15℃~60℃;
>
产品属性
产地类别
进口
价格区间
面议
仪器种类
实验室型
应用领域
环保,化工,生物产业,农业,能源
多通道培养
8
LED光源
标配冷白光LED,8个通道光源可定制
光密度在线监测
OD680/OD720
温度控制
15℃~60℃
关闭
北京易科泰生态技术有限公司

北京易科泰生态技术有限公司

高级会员15
收藏

组合推荐相似产品

产品简介

MC1000 8通道藻类在线监测系统由8个100ml藻类培养试管、水浴控温系统、LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等。

详细介绍

   MC1000 8通道藻类在线监测系统由8个100ml藻类培养试管、水浴控温系统、LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等,MC1000 8通道藻类在线监测系统主要功能特点如下:

应用领域:

l 多通道同步藻类培养

l 同步梯度胁迫实验

l 培养条件优化

l 控制培养条件与藻类生长动力学监测

仪器型号:

MC 1000-OD: 8个通道光源颜色相同,标配冷白光LED

MC 1000-OD-WW:8个通道光源颜色相同,标配暖白光LED

MC 1000-OD-MULTI: 8个通道光源颜色不同,分别为1)紫光405nm,2)蓝紫光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。

MC 1000-OD-MIX:每个通道可配备多8种不同颜色的LED光源,光源颜色可由用户定制,可选颜色为1)紫光405nm,2)蓝紫光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。

技术指标:

应用案例:

不同CO2浓度下衣藻Chlamydomonas的生长曲线(Zhang,2014)

聚球藻Synechococcus野生型和△nblA的生长曲线(Yu,2015)

产地:捷克

参考文献:

1.  Barera S, et al. 2021. Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. Journal of Biotechnology 328: 0168-1656.

2.  Pivato M, et al. 2021. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. Algal Research 55(16):102255.

3.  Gachelin M, et al. 2021. Enhancing PUFA-rich polar lipids in Tisochrysis lutea using adaptive laboratory evolution (ALE) with oscillating thermal stress. Applied Microbiology and Biotechnology 105: 301-312.

4.  Chen H, et al. 2021. A Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA. mBio 12(1).

5.  Cecchin M, et al. 2021. CO2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species 18(2): 431842.

6.  Dixit RB, et al. 2021. Secretomics: A Possible Biochemical Foot Printing Tool in Developing Microalgal C*tion Strategies. doi: 10.21203/rs.3.rs-163118/v1

7.  Kareya MS, et al. 2020. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO2 in Microchloropsis gaditana NIES 2587. Frontiers in Plant Science 11: 981.

8.  Billey E, et al. 2021. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant Physiology 185(3): 815-835.

9.  Vonshak A, et al. 2020. Photosynthetic characterization of two Nannochloropsis species and its relevance to outdoor c*tion. Journal of Applied Phycology 32(2):909-922.

10. Dienst D, et al. (2020). High density c*tion for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Scientific Reports 10(1): 5932.

11. Weiner I, et al. 2020. CSO -A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. Algal Research 46: 101788.

12. Akma C, et al. 2020. Two-phase method of c*ting Coelastrella species for increased production of lipids and carotenoids. Bioresource Technology Reports 9: 100366.

13. Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(1): 78.

14. Alvarenga D, et al. 2020. AcnSP – A Novel Small Protein Regulator of Aconitase Activity in the Cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Microbiology 11: 1445.

15. Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. BMC Plant Biology 20(1): 424.

16. Nzayisenga, JC, et al. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels 13(284): 1179-1184.

17. Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(6): 312.

18. Flamholz AI, et al. 2020. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. eLife 9: e59882.

19. Gupta JK, et al. 2020. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation. Biotechnology for Biofuels 13: 17.

20. Valev D, et al. 2020. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Current Microbiology 77(8) : 1590-1599.

21. Yao L, et al.. 2020. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nature Communications 11(1): 1666.

22. Shrameeta S, et al. 2020. Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria1. Plant Physiology 182(1):507-517.

23.  Alessandra B, et al. 2020. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana. Plant & Cell Physiology 61(1): 41-52..



上一篇:藻类培养系统对生物多样性的影响与贡献 下一篇:手持式蓝绿藻测试仪:教育科普的生动教具
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :