其他品牌 品牌
生产厂家厂商性质
北京市所在地
西班牙Das Nano公司成立于2012年,是家提供高安全别打印设备,太赫兹无损检测设备以及个人身份安全验证设备的高科技公司。ONYX是其在各地范围内推出的款针对石墨烯、半导体薄膜和其他二维材料大面积太赫兹无损表征的测量设备。ONYX采用进的脉冲太赫兹时域光谱技术,实现了从科研及到工业的大面积石墨烯及二维材料的无损和高分辨,快速的电学性质测量,为石墨烯和二维材料科研和产业化研究提供了强大的支持。
与传统四探针测量法相比,ONYX无损测量样品质量空间分布
与拉曼,AFM,SEM相比,ONYX能够快速表征超大面积样品
背景介绍
太赫兹辐射( T射线)通常指的是频率在0. 1~10THz、波长在30 μm-3 mm之间的电磁波,其波段在微波和红外之间,属于远红外和亚毫米波范畴。该频段是宏观经典理论向微观量子理论的过度区,也是电子学向光子学的过渡区。在20世纪80年代中期以前,由于缺乏有效的产生方法和探测手段,科学家对于该波段电磁辐射性质的了解和研究非常有限,在相当长的段时期,很少有人问津。电磁波谱中的这波段(如下图) ,以至于形成远红外和亚毫米波空白区,也就是太赫兹空白区(THz gap)。
太赫兹波段显著的点是能够穿透大多数介电材料(如塑料、陶瓷、药品、缘体、纺织品或木材),这为无损检测(NDT)开辟了个可能的新。同时,许多材料在太赫兹频率上呈现出可识别的频率指纹性,使得太赫兹波段能够实现对许多材料的定性和定量研究。太赫兹波的这两个性结合在起,使其成为种全新的材料研究手段。而且其光子能量低,不会引起电离,可以做到真正的无损检测。
ONYX工作原理
ONYX是实现石墨烯、半导体薄膜和其他二维材料全面积无损表征的测量系统,能够满足测试面积从科研(mm2)到晶元(cm2)以及工业(m2)的不同要求。与其他大面积样品的测量方法(如四探针法)相比,ONYX能够直观得到样品导电性能的空间分布。与拉曼、扫描电镜和透射电镜等微观方法相比,微米的空间分辨率能够实现对大面积样品的快速表征。
ONYX采用进的脉冲太赫兹时域光谱THz-TDS技术,产生皮秒量的短脉太赫兹冲辐射。穿透性*的太赫兹辐射穿透进样品达到各个界面,均会产生个小反射波可以被探测器捕获,获得太赫兹脉冲的电场强度的时域波形。对太赫兹时域波形进行傅里叶变换,就可以得到太赫兹脉冲的频谱。分别测量通过试样前后(或直接从试样激发的)太赫兹脉冲波形,并对其频谱进行分析和处理,就可获得被测样品介电常数,吸收吸收以及载流子浓度等物理信息。再用步进电机完成其扫描成像,得到其二维的电学测量结果。
ONYX主要参数及点
样品大小: 10x10mm-200x200mm 全面的电导率和电阻率分析 样品全覆盖测量 分辨率:50μm *非接触无损 无需样品制备 | 载流子迁移率, 散射时间, 浓度分析 可定制样品测量面积(m2量) 超快测量速度: 12cm2/min 软件功能丰富,界面友好 全自动操作 |
图1 太赫兹光谱范围及信噪比
ONYX主要功能
→ 直流电导率(σDC) → 载流子迁移率, μdrift → 直流电阻率, RDC | → 载流子浓度, Ns → 载流子散射时间,τsc → 表面均匀性 |
ONYX应用方向
石墨烯材料: → 单层/多层石墨烯 → 石墨烯溶液 → 掺杂石墨烯 → 石墨烯粉末 → 氧化石墨烯 → SiC外延石墨烯 | 其他二维材料: → PEDOT → Carbon Nanotubes → ITO → NbC → IZO → ALD-ZnO |
石墨烯 | 光伏薄膜材料 | 半导体薄膜 | 电子器件 |
PEDOT |
钨纳米线 |
GaN颗粒 | Ag 纳米线 |
测试数据
1. 10x10mm CVD制备的石墨烯在不同分辨率下的电导率结果
2.10 x10mm CVD制备的石墨烯不同电学参数测量结果
3.用ONYX测量ALD沉积在硅基底上的TiN电导率测量结果
应用案例
■ 《石墨烯电学测量方法标准化指导手册》
近期,欧洲计量创新与研究计划(EMPIR)的项目 “GRACE-石墨烯电学性测量的新方法”发布了关于石墨烯电学性测量方法的标准化指导手册。“GRACE-石墨烯电学性测量新方法”项目是由英国国家实验室(NPL)主导,与意大国家计量研究所、西班牙Das-nano 公司等合作,旨在开发石墨烯电学性的新型测量方法,以及未来石墨烯电学测量的标准化制定。
图 石墨烯电学测量方法标准化指导手册(发送邮件至info@qd-china.com获取完整版资料)
石墨烯由于其*异的电学性,在未来有望成为大规模应用于电子工业及能源域的新材料。但是,目前受限于:1)如何制备大面积高质量石墨烯,且具有均匀和可重复的电气和电子性能;2)无论是作为科研用的实验样品还是在生产线中的批量化生产,对其电学性质的准确且可重复的表征方法目前尚不完善,缺乏正确实施此类测量方法的指导手册及测量标准。针对目前面临的问题和挑战,EMPIR 的“石墨烯电学性测量新方法”项目对现有测量方法进行了总结和规范指导,更重要的是开发了石墨烯电学性的快速高通量,非接触测量的新方法,并用现有技术对其进行了验证,取得了很好的致性。
西班牙Das-Nano公司参与了“GRACE-石墨烯电学性测量新方法”项目中基于THz-TDS的全新非接触测量方法的开发及测量标准的制定。基于该技术,Das-Nano推出了款可以实现大面积(8英寸wafer)石墨烯和其他二维材料的全区域无损非接触快速电学测量系统-ONYX。ONYX采用体化的反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接触测量方法(如四探针法- Four-probe Method,范德堡法-Van Der Pauw和电阻层析成像法-Electrical Resistance Tomography)及显微方法(原子力显微镜-AFM, 共聚焦拉曼-Raman,扫描电子显微镜-SEM以及透射电子显微镜-TEM)之间的不足和空白。ONYX可以快速测量从0.5 mm2到~m2的石墨烯及其他二维材料的电学性,为科研和工业化提供了种颠覆性的检测手段[1,2]。
更多详细信息请点击:欧洲计量创新与研究计划(EMPIR)发布《石墨烯电学测量方法标准化指导手册》
参考文献:
[1] Cultrera, A., Serazio, D., Zurutuza, A. et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci Rep 9, 10655 (2019).
[2] Melios, C., Huang, N., Callegaro, L. et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale. Sci Rep 10, 3223 (2020).
发表文章
1. P Bogild et al. Mapping the electrical properties of large-area graphene. 2D Mater. 4 (2017) 042003.
2. S Fernández et al. Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines 2019, 10, 402.
3. David M. A. Mackenzie et al. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. OPTICS EXPRESS 9220, Vol. 26, No. 7, 2 Apr 2018.
4. A Cultrera et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Scientific Reports , (2019) 9:10655
用户单位
重要客户
|
|
|
|
|
|
合作伙伴
参与项目