其他品牌 品牌
生产厂家厂商性质
北京市所在地
“空间和时间的结合”— 纳米分辨和飞秒别的光谱
超快光谱技术拥有诸多色,例如*的时间分辨率,丰富的光与物质的非性相互作用,可以用光子相干地调控物质的量子态,其衍生和嫁接技术带来许多凝聚态物理实验技术的变革等等。然而,受制于激发波长的限制(可见-近红外),超快光谱在空间分辨上受到了定的制约,在对些微纳尺寸结构的材料研究中,诸如维半导体纳米线,二维拓扑材料、纳米相变材料等,无法精准地进行有效的超快光谱分析。
Neaspec公司用十数年在近场及纳米红外域的技术积累,开发出了全新的纳米空间分辨超快光谱和成像系统,其pump激发光可兼容可见到近红外的多组激光器,probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征。
应用域
→ 二维材料 → 半导体 → 纳米线/纳米颗粒 | → 等离激元 → 高分子/生物材料 → 矿物质 ...... |
设备点和参数:
→ 超高空间分辨和时间分辨同时实现;
→ 20-50 nm空间分辨率;
→ 根据pump光源时间分辨可达50 fs;
→ probe光谱可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)
技术原理:
测试数据
■ 纳米红外超快光谱
分辨率为10nm的InAs纳米线红外成像,并结合时间分辨超快光谱分析载流子衰减层的形成过程
参考文献:M. Eisele et al., Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution, Nature Phot. (2014) 8, 841.
稳态开关灵敏性:容易发生相变的区域,光诱导散射响应较大
参考文献:M. A. Huber et al., Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams, Nano Lett. 2016, 16, 1421.
参考文献:G. X. Ni et al., Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene, Nature Phot. (2016) 10, 244.
参考文献:Mrejen et al., Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow- gap semiconductor, Sci. Adv. (2019), 5, 9618.
■ 范德华材料 WSe2 中的超快研究
参考文献:Mrejen et al., Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging, Sci. Adv. (2019), 5, 9618.
■ 黑磷中的近红外超快激发
黑磷的high-contrast interband性质使其具有半导体性质,在光诱导重组过程中表面激发的电子空隙对(electron-hole pairs)∼50fs并在5ps内消失
参考文献:M. A. Huber et al.,Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures, Nat. Nanotechnology. (2016), 5, 9618.
■ 多层石墨烯中等离子效应衰减效应
| |
参考文献:M. Wagner et al., Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump−Probe Nanoscopy, Nano Lett. 2014, 14, 894.
发表文章:
neaspec中国用户发表文章超80篇,其中36篇影响因子>10。
部分文章列表:
● M. B. Lundeberg et al., Science 2017 AOP.
● F. J. Alfaro-Mozaz et al., Nat. Commun. 2017, 8, 15624.
● P. Alonso-Gonzales et al., Nat. Nanotechnol. 2017, 12, 31.
● M. A. Huber et al., Nat. Nanotechnol. 2017, 12, 207.
● P. Li et al., Nano Lett. 2017, 17, 228.
● T. Low et al., Nat. Mater. 2017, 16, 182.
● D. Basov et al., Nat. Nanotechnol. 2017, 12, 187.
● M. B. Lundberg et al., Nat. Mater. 2017, 16, 204.
● D. Basov et al., Science 2016, 354, 1992.
● Z. Fei et al., Nano Lett. 2016, 16, 7842.
● A. Y. Nikitin et al., Nat. Photonics 2016, 10, 239.
● G. X. Ni et al., Nat. Photonics 2016, 10, 244.
● A. Woessner et al., Nat. Commun. 2016, 7, 10783.
● Z. Fei et al., Nano Lett. 2015, 15, 8271.
● G. X. Ni et al., Nat. Mater. 2015, 14, 1217.
● E. Yoxall et al., Nat. Photonics 2015, 9, 674.
● Z. Fei et al., Nano Lett. 2015, 15, 4973.
● M. D. Goldflam et al., Nano Lett. 2015, 15, 4859.
● P. Li et al., Nat. Commun. 2015, 5, 7507.
● S. Dai et al., Nat. Nanotechnol. 2015, 10, 682.
● S. Dai et al., Nat. Commun. 2015, 6, 6963.
● A. Woessner et al., Nat. Mater. 2014, 14, 421.
● P. Alonso-González et al.,Science 2014, 344, 1369.
● S. Dai et al., Science 2014, 343, 1125.
● P. Li et al., Nano Lett. 2014, 14, 4400.
● A. Y. Nikitin et al., Nano Lett. 2014, 14, 2896.
● M. Wagner et al., Nano Lett. 2014, 14, 894.
● M. Schnell et al., Nat. Commun. 2013, 5, 3499.
● J. Chen et al., Nano Lett. 2013, 13, 6210.
● Z. Fei et al., Nat. Nanotechnol. 2012, 8, 821.
● J. Chen et al., Nature 2012, 487, 77.
● Z. Fei et al., Nature 2012, 487, 82.