aimbiotech代理 Luer Connectors   LUC-1   (36/pack)
aimbiotech代理 Luer Connectors   LUC-1   (36/pack)
aimbiotech代理 Luer Connectors   LUC-1   (36/pack)

SKU: HOL-1aimbiotech代理 Luer Connectors LUC-1 (36/pack)

参考价: 面议

具体成交价以合同协议为准
2017-08-11 16:55:49
1141
产品属性
关闭
世联博研(北京)科技有限公司

世联博研(北京)科技有限公司

初级会员9
收藏

组合推荐相似产品

产品简介

aimbiotech 3D Cell Culture Chip,Holders HOL-1 (10/box)三维微流控芯片系统现货

详细介绍

AIM BIOTECH是新加坡一家专注于创新性工具研发的创业型公司,其应用领域涵盖科学研究、药物开发和临床诊断范畴。AIM BIOTEC为科研市场做出的*份贡献是开发出一款易于操作的、模块化的平台,该平台成功地将3D细胞培养纳入了科研人员研究工作体系之中。
AIM BIOTECH 3D细胞培养芯片概述
AIM的3D细胞培养芯片透气性好,而且用户可以通过选择不同的水凝胶,在间隔的3D和2D空间进行不同类型细胞的培养。同时可以通过对化学物浓度梯度和流体的调控很好地模拟符合用户特定需求的微环境。





 

3D Cell Culture Chip
3-channel design : 3D gel region flanked by 2 media channels

Picture

  • Microscope slide format 75mm X 25mm
  • Compatible with all polymerisable gels including collagen, fibrinogen, Matrigel, etc. and combinations thereof
  • Gas permeable laminate for effective gas exchange
  • Optically clear and compatible with phase contrast, fluorescence and confocal microscopy
  • Enables monotypic or organotypic co-culture models
  • Enables the control of interstitial flow across the 3D gel region
  • Enables the control of chemical gradients across the 3D gel region
  • Sterile & ready-to-use
  • Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration
  • Designed for modular expansion with AIM Luer Connectors
  • Fits into AIM Microtiter Plate Holders for easy handling and stacking
GENERAL PROTOCOLSAPPLICATION-SPECIFIC PROTOCOLS

Picture

Picture

BUY NOW

Compatible with all polymerisable gels

Dedicated 3D regions in AIM chips can be filled with collagen, fibrinogen & other hydrogels or Matrigel™ & other extracellular matrixes (ECM) to suit your experimental needs. The hydrogels can be used on their own or in combination with other components to form 3D microenvironments of your choice (stiffness, pH and material compositions). 
The miniature posts that border the 3D region are designed to set up a vertical gel wall with minimal buildup of resistance during the gel filling process. Cells can be homogeneously dispersed or included as aggregates into the gel.

Picture

Gas exchange

One of the key advantages of PDMS chips is the material's gas permeability, which enables cells cultured within PDMS devices to 'breathe'. However, PDMS absorbs hydrophobic molecules from solution, making it unsuitable for studies investigating hydrophobic drugs, chemicals or biological molecules.
AIM chips have overcome the problem by using a gas-permeable plastic to laminate the device. Gas exchange takes place effectively, allowing you to set up normoxic or hypoxic culture environments as needed. 

Picture

Optically clear

AIM chips are made from polymers with an excellent light transmittance rate of 92%. You can visualise your experiments with phase contrast, epifluorescence, 2-photon and confocal microscopy. 

Picture

Endothelial cell monolayer in 2D channel forming a vertical wall on collagen gel (confocal)

Picture

Angiogenic sprouts in collagen gel (confocal)

Enables monotypic or organotypic co-culture models

Different cell types can be cultured together in the same channel or compartmentalised into different channels, allowing users to design models to represent different biological systems. Future AIM chips will have more 3D & 2D channel designs to cater to your needs.

Picture

Picture

Enables the control of interstitial flow across the 3D region

The interstitial flow across the 3D hydrogel can be controlled by setting up a pressure gradient between the flanking channels. This can be achieved by having a larger media volume in one media channel than the other, or by setting shear flow regimes that establish a pressure differential. 

Picture

Enables the control of chemical gradients across the 3D region

A chemical concentration gradient can be set up across the porous 3D hydrogel easily by using a higher concentration of the chemical in a channel and allowing diffusion to take place.  This feature is very useful for studies where directional cues of effectors are critical, including angiogenesis, cell migration and neurite guidance 

Picture

Sterile & ready-to-use

AIM chips are individually packaged for your convenience. All chips are sterile and are ready for use right out of the package. AIM chips let you focus on your experiments, rather than on device preparation.

Picture

Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration

Due to the small culture volumes of microfluidic devices, culture media typically has to be replenished every day. Vacuum aspiration is used to remove old media before pipetting new media into the device. Media ports in AIM chips are designed with troughs to let users rapidly aspirate old media out without the risk of accidentally aspirating all the media & cells from the device. 

Picture

Cross-section of media ports during aspiration. Positioning the tip in the trough prevents over-aspiration.

The publications listed below were conducted on lab-made devices that form the basis of AIM Biotech chips.

TECHNOLOGY

Key publications

  1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD.  Lab Chip, 2008, 8, 1468-1477.
  2. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
  3. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S.  Nature Prot, 7(7):1247-1259, 2012, PMID: 22678430
  4. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD.  Integr Biol (Camb). 2012 Jun 7. PMID 22722695
  5. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD.   Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID: 22869695
  6. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD.  Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID: 23172153 
  7. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD.  Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID: 24550267
  8. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD.  Proceedings of the National Academy of Sciences, pp. 201417115, 2014






  9.  
  10.  
  11.  
  12.  
  13.  

Publications

  1. A microfluidic platform for studying the effects of small temperature gradients in incubator environment. Das SK, Chung S, Zervantonakis I, Atnafu J, Kamm RD. Biomicrofluidics, 2008, 2, 03106.
  2. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD.  FASEB J, 2009, 23(7):2155-64.
  3. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Chung S, Sudo R, Zervantonakis I, Rimchala T, Kamm RD.  Adv Mat,Dec 18;21(47):4863-7. doi: 10.1002/adma.200901727.
  4. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis IK, Chung S, Sudo R, Zhang M, Charest JL, Kamm RD. Intern J Micro-Nano Scale Transport, 1(1): 27-36, 2010.
  5. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Chung S, Sudo S, Vickerman V, Zervantonakis IK, Kamm RD.  Annals Biomed Engineering, 2010, DOI: 10.1007/s10439-010-9899-3.
  6. Determining cell fate transition probabilities to VEGF/Ang 1 levels: Relating computational modeling to microfluidic angiogenesis studies. Das A, Lauffenburger DA, Asada HH, Kamm RD.  Cellular and Molecular Bioengineering. 2010 Dec; 3(4):345-360.
  7. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD.  Lab Chip. 2011 Feb 7; 11 (3) :497-507. PMID:21107471.
  8. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD.  Biomicrofluidics. 2011 Mar 30; 5(1):13406. PMID:21522496.
  9. Hot embossing for fabrication of a microfluidic 3D cell culture platform. Jeon JS, Chung S, Kamm RD, Charest JL. Biomed Microdevices. 2011 Apr; 13(2):325-33. PMID:21113663; PMC3117225.
  10. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc Natl Acad Sci U S A. 2011 Jul 5; 108 (27):11115-20. PMID:21690404; PMCID: PMC3131352.
  11. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, Sudo R, Kamm RD, Chung S.  Lab Chip. 2011 Jul 7; 11 (13) :2175-81. PMID:21617793.
  12. Sprouting angiogenesis under a chemical gradient regulated by interaction with endothelial monolayer in microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S.  Anal Chem. Epub 2011 Oct 10. PMID: 21985643.
  13. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, Kamm RD, Asada H.  PLoS One, 7(5), 2012. PMID: 22662145
  14. In vitro angiogenesis assay for the study of cell encapsulation therapy. Choong Kim, Seok Chung, Liu Yuchun, Min-Cheol Kim Jerry K. Y. Chan, H. Harry Asada and Roger D. Kamm.  Lab Chip, 2012, DOI:10.1039/C2LC40182G PMID: 22722695
  15. A Novel Microfluidic Platform for High-Resolution Imaging of a Three-Dimensional Cell Culture under a Controlled Hypoxic Environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD.   Lab Chip, Nov 21;12(22):4855-63. doi: 10.1039/c2lc40306d. 
  16. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapali CR, Ozdinler PH, Pasquina L, Chung S, Varner J, DeValance S, Kamm R, Macklis JD.  Integr Biol, 4, 1398-1405, 2012, DOI: 10.1039/c2ib20019h
  17. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD.  PLoS ONE, 2012;7(12):e50582. doi: 10.1371/journal.pone.0050582. PMID: 23226527
  18. Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Lee E-S, Kamm RD, Kim J-H, Chung S.  Adv Healthc Mater. 2013 Jun;2(6):790-4. doi: 10.1002/adhm.201200320. Epub 2012 Nov 26. PMID: 23184641
  19. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, Kamm RD, Kim YJ, Chung S. Lab Chip. 2012 Oct 21;12(20):3861-5. PMID: 22903230
  20. A Three-Dimensional Microfluidic Tumor Cell Migration Assay to Screen the Effect of Anti-Migratory Drugs and Interstitial Flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, Tanishita K, Sudo R.  Microfluid Nanofluid, 2012,  DOI 10.1007/s10404-012-1104-6
  21. In vitro model of tumor cell extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS One. 2013;8(2):e56910. doi: 10.1371/journal.pone.0056910. Epub 2013 Feb 20. PMID: 23437268
  22. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr Biol (Camb). 2013 Sep 23; 5(10):1262-71. doi: 10.1039/c3ib40149a. PMID: 23995847
  23. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M.  Integr Biol (Camb), 2013, DOI: 10.1039/c3ib40082d.
  24. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. doi: 10.1089/ten.TEC.2013.0370. Epub 2013 Dec 13. PMID: 24151838
  25. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD.  Drug Discov Today. 2013 Dec 17. pii: S1359-6446(13)00424-8. doi: 10.1016/j.drudis.2013.12.006. [Epub ahead of print] PMID: 24361339
  26. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Charest JL, Moretti M, Kamm RD. Biomaterials. 2014 Mar;35(8):2454-61. doi: 10.1016/j.biomaterials.2013.11.050. Epub 2013 Dec 31. PMID: 24388382
  27. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C.  Mol Pharm. 2014 Jul 7;11(7):2022-9. doi: 10.1021/mp500054h. Epub 2014 Feb 24. PMID: 24533867 
  28. In Vitro Microvessel Growth and Remodeling within a Three-dimensional Microfluidic Environment. Park YK, Tu TY, Lim SH, Clement IJM, Yang SY, Roger D. Kamm RD.  Cell Mol Bioeng. 2014 Mar 1;7(1):15-25. PMID: 24660039 
  29. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, Reibel JB, Tamayo P, Godfrey JT, Qian ZR, Page AN, Maciag K, Chan EM, Silkworth W, Labowsky MT, Rozhansky L, Mesirov JP, Gillanders WE, Ogino S, Hacohen N, Gaudet S, Eck MJ, Engelman JA, Corcoran RB, Wong KK, Hahn WC, Barbie DA. Cancer Discov. 2014 Apr;4(4):452-65. doi: 10.1158/2159-8290.CD-13-0646. Epub 2014 Jan 20.
  30. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD.  Integr Biol (Camb). 2014 May;6(5):555-63. doi: 10.1039/c3ib40267c. PMID: 24676392
  31. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, Lewis R, Daigh C, Hansen TD, Mann DA, Thomson JA, Griffith LG, Kamm RD, Schwartz MP, Murphy WL.  Stem Cell Rev. 2014 Jun;11(3):511-25 doi: 10.1007/s12015-014-9549-5 PMID: 25190668
  32. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden M, Herndon J, Cohoon TJ, Fleming T, Tamayo P, Mesirov JP, Ogino S, Wong KK, Ellis MJ, Hahn WC, Barbie DA, Gillanders WE.  J Clin Invest. 2014 Dec;124(12):5411-23. doi: 10.1172/JCI75661. Epub 2014 Nov 3.
  33. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, Zhu SJ, Zhang Y Ercan D, Liao RG, Capelletti M, Zhou W, Hur W, Kim N, Sim T, Gaudet S, Barbie DA, Yeh JR, Yun CH, Hammerman PS, Mohammadi M, Jänne PA, Gray NS. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4869-77. doi: 10.1073/pnas.1403438111. Epub 2014 Oct 27.
  34. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm. Lab Chip. 2014 Dec 3;15(1):301-10. doi: 10.1039/c4lc00866a. PMID: 25370780
  35. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang TM, Tu TY, Penny HL, Wong SC, Kamm RD, Thiery JP.  Oncotarget 6 (28), 25295-25307, 2015
  36. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. J Bai, TY Tu, C Kim, JP Thiery, RD Kamm.  Oncotarget, 2015 Nov 3;6(34):36603-14. doi: 10.18632/oncotarget.5464.
  37. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD. Small. 2016 Feb;12(5):688. doi: 10.1002/smll.201670025.
  38. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong JS, Kamm RD, Huh D, Sohn LL, Chung S.  ScI Rep. 2015 Dec 21;5:18290. doi: 10.1038/srep18290.
  39. Microfluidics: A New Tool for Modeling Cancer–Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD.  Trends in Cancer, Volume 2, Issue 1, p6–19, January 2016.
Flexcell® Chipmate Kits 
with AIM Biotech Microfluidic 3D Cell Culture Chips
Catalog Page AIM Biotech Protocols 

Search FAQs

 

Microfluidic 3D cell culture chip for running multiple assays including cell migration, monotypic or organotypic co-culture, cell invasion, and angiogenesis.

  • AIM Biotech's 3D Cell Culture Chip with a central hydrogel channel flanked by two media channels (see Fig. 1).
  • AIM Biotech's chips are gas permeable, in microscope slide format (75 mm X 25 mm), and optically clear. Compatible with phase contrast, fluorescence and confocal microscopy.
  • Flexcell®'s HiQ Flowmate® dual syringe pump with independent fluid drive system capable of constant steady, pulsatile, continuous, and oscillating flow modes.
  • Flexcell®'s Collagel® or Thermacol® collagen kits for creating 3D hydrogels.
  • Chips allow users to co-culture different cell types in discrete 3D and 2D compartments.
  • Chips can be used to study interstitial flow across the 3D gel region.

 

上一篇:可编程编码器芯片:灵活性与精度的结合 下一篇:基于mRNA微流控的快速筛选与高通量分析
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :