AIRTIMES/中航时代 品牌
生产厂家厂商性质
北京市所在地
型号:ZJC-50KV丨ZJC-100KV
一、标准:
GB1408.1-2006《绝缘材料电气强度试验方法》
GB1408.2-2006《绝缘材料电气强度试验方法 第2部分:对应用直流电压试验的附加要求》
JJG 795-2004 《耐电压测试仪检定规程》
GB/T1695-2005《硫化橡胶工频击穿电压强度和耐电压的测定方法》
GB/T3333《电缆纸工频击穿电压试验方法》
GB12913-2008《电容器纸》
ASTM D149《固体电绝缘材料工业电源频率下的介电击穿电压和介电强度的试验方法》
二、适用材料及定义:
电压击穿强度试验仪(击穿电压测试仪)适用于连续均匀升压或逐级升压的方式,对试样施加交流或直流电压直至击穿,测量击穿电压值,计算试样的击穿强度,用迅速升压的方法,将电压升到规定值,保持一定的时间试样不击穿,定此时规定值为试样的耐电压值。
电压击穿强度试验仪(击穿电压测试仪)主要适用于固体绝缘材料如:电线套管、树脂和胶、浸渍纤维制品、云母及其制品、塑料薄膜、陶瓷、玻璃、绝缘漆、硫化橡胶、电缆纸、绝缘漆漆膜、硬质橡胶、纸板等绝缘介质在空气或液体介质中,测量工频(48~62Hz)或对应直流电压下击穿强度和耐电压时间。
三、主要技术要求:
1、设备输入电压:220V (普通试验室电源均可兼容);
2、试验电压方式:ZJC-50KV交流0-50 KV;直流0-50 KV。ZJC-100KV交流0-100KV;直流0-100KV
3、电器容量:5KVA;10KVA
4、试验方法:0-50KV;0-100KV全量程可调(采用高精度电压采样器件);
5、击穿及耐压试验升压速率:10V/S-5KV/S(此项满足0新标准里面极快速升压试验要求);
6、试验方式:直/直流试验:1、匀速升压 2、阶梯升压 3、耐压试验
7、过电流保护装置应有足够灵敏度以保证试样击穿时在0.1S内切断电源。
8、本仪器采用无触点原件匀速调压方式
09、支持短时间内短路试验要求。
10、电压测量误差:1%。
11、试验电压连续可调:ZJC-50KV:0-50KV。ZJC-100KV:0-100KV
12、耐压时间设定:0-8小时(可通过软件连续设定)。
13、主机尺寸:ZJC-50KV:约800*700*1300。ZJC-100KV:约1800*900*1400(长宽高mm)
14、主机重量:ZJC-50KV约200KG,ZJC-100KV约300KG。
15、九级安全防护措施:
(1) 超压保护
(2)试验过流保护
(3)试验短路保护
(4)安全门开启保护
(5)软件误操作保护
(6)零电压复位保护
(7)试验结束放电保护
(8)独立保护接地
(9)试验完成后电磁放电
提高固体电介质击穿电压的方法
【摘 要】文章介绍提高固体电介质击穿电压的方法。通过功能概述、要点归纳,掌握提高固体电介质击穿电压常用方法和措施。
【关键词】介质击穿;绝缘
在强电场作用下,固体电介质丧失电绝缘能力而由绝缘状态突变为良导电状态。导致击穿的低临界电压称为击穿电压。均匀电场中,击穿电压与固体电介质厚度之比称为击穿电场强度(简称击穿场强,又称介电强度),它反映固体电介质自身的耐电强度。不均匀电场中,击穿电压与击穿处固体电介质厚度之比称为平均击穿场强,它低于均匀电场中固体电介质的介电强度。
1 击穿形式
根据击穿的发展过程,固体电介质的击穿可分为3种形式:电击穿、热击穿和电化学击穿,同一种电介质中发生何种形式的击穿,取决于不同的外界因素。随着击穿过程中固体电介质内部的变化,击穿过程可以从一种形式转变为另一种形式。
1.1 电击穿
取决于固体电介质中碰撞电离的一种击穿形式。电场使电介质中积聚起足够数量和足够能量的带电质点,导致电介质丧失绝缘性能。对于电击穿有以下几种不同的理论解释:本征击穿、电子崩击穿和电致机械应力击穿,通常以本征击穿代表电击穿,所以电击穿有时又称本征击穿。本征击穿过程所需时间为10-8s数量级,击穿场强大于1MV/cm。
1.2 热击穿
在电场作用下,固体电介质承受的电场强度虽不足以发生电击穿,但因电介质内部热量积累、温度过高而导致失去绝缘能力,从而由绝缘状态突变为良导电状态。
1.3 电化学击穿
在电场、温度等因素作用下,固体电介质发生缓慢的化学变化,性能逐渐劣化,最终丧失绝缘能力,从而由绝缘状态突变为良导电状态。电化学击穿过程包括两部分:因固体电介质发生化学变化而引起的电介质老化;与老化有关的击穿过程。
固体电介质发生缓慢化学变化的原因多种多样。直流电压下,固体电介质因离子电导而发生电解,结果在电极附近形成导电的金属树枝状物,甚至从一个电极伸展到另一个电极。在电场作用下,固体电介质内部的气泡中,或不同固体电介质之间的气隙或油隙中,会发生局部放电。与固体电介质接触的电极边缘场强较强的局部区域内如有气体或液体电介质,这里也会发生局部放电。局部放电的长期作用会使固体电介质逐步损坏。
电场越强,温度越高,电压作用时间越长,固体电介质的化学变化进行得越强烈,其性能的劣化也越严重。
固体电介质的化学变化通常使其电导增加,这会使固体电介质的温度上升,因而电化学击穿的最终形式是热击穿。
影响因素 影响固体电介质击穿电压的主要因素有:电场的不均匀程度,作用电压的种类及施加的时间,温度,固体电介质性能、结构,电压作用次数,机械负荷,受潮等。
2 提高固体击穿电压的方法
(1)改进制造工艺,使介质可能做到均匀致密。
(2)改进绝缘设计,使电场分布均匀。
(3)改善绝缘的运行条件。
3 提高固体击穿电压的具体措施
(1)通过精选材料、改善工艺、真空干燥、加强油浸(油、胶、漆),以清除固体电介质中残留的杂质、气泡、水分等。
如电力电容器内部的浸渍剂主要作用是填充固体绝缘介质的空隙,以提高介质的耐电强度,改善局部放电特性和增强散热冷却的能力。由于电容器绝缘介质的工作电场强度较高,同时冷却条件较差,因此对浸渍的技术性能要求较高。目前采用表面粗化薄膜,并在高真空下浸渍而形成的全膜电容器已广泛应用。
纸绝缘电缆在运行过程中,由于黏性浸渍剂的热膨胀系数大,在负荷、温度有变动体积改变明显,而铅铝护套受热后冷却难以恢复原有尺寸,绝缘内部容易形成气隙。故黏性浸渍电缆仅适用于35KV以下交流系统。
更高电压的油纸电缆选用黏度较低的电缆油浸渍,并加以油压,以减小油中气隙,提高绝缘强度。由于薄纸的电气强度高,通常包缠用的纸带改用0.045~0.075mm的薄纸来代替常用的0.12mm厚的电缆纸。随着绝缘材料的发展,用烷基苯等合成油来代替电缆油,用薄膜-纤维合成纸来代替电缆纸。
(2)采取合理的绝缘结构。使各部分绝缘的耐电强度与其承受的场强相匹配;改善电极形状及表面光洁度,是电场分布均匀;改善电极与绝缘体的接触状态,消除接触触电的气隙或使接触处的气隙不承受电位差,如用半导体漆。
带绝缘(总包绝缘)的三相交流电缆方式,电场属非同轴圆柱分布,平行于纸层方向将出现较强的切线分量,从而容易出现滑闪放电。故10KV以上的三芯电缆不用带绝缘结构而改用分相铅包(或屏蔽)的,若线芯及金属护层表面均光滑,其间绝缘层中的电场分布近于同轴圆柱体电场,电场分布较为均匀。
交流110KV及以上的高压套管常用电容式套管,它是在导电杆上包以多层绝缘纸构成,在层间按设计要求位置加有铝箔,以起到均压作用。
油浸式变压器中常用的绝缘纸有两种:①电缆纸(通常用0.08~0.12mm厚),主要用于导线绝缘、层间绝缘及引线绝缘等;②更薄的电话纸和更柔软的皱纹纸有利于包紧出线头、引线等。绝缘纸板常用作绕组间的垫块、隔板等,或制成绝缘筒及对铁轭的角环等。在电场很不均匀的区域,如对铁轭或高压引线绝缘,也采用由纸浆制成合适形状的绝缘成型件,以改善电场分布,防止发生沿面滑闪放电。通常变压器绕组与铁轭间的电场不如绕组中部均匀,故高压进线布置在绕组中部,若需将高压引线(或自耦变压器的中压引线)安置在绕组端部时,需要加进静电板以改善绕组近端部处的电场分布。静电板是在绝缘环上用金属带包缠成一个具有较大曲率半径的不闭合金属环,再包以很厚的绝缘层。
(3)在运行中,注意防止尘污、防潮和有害气体的侵蚀,加强散热冷却,如自然通风、强迫通风、氢冷、油冷、水内冷等措施。如油、纸绝缘的配合使用,可以弥补各自缺点,显著增强绝缘性能,但纸纤维为多孔性的极性介质,极易吸收水分,即使经过干燥油浸处理仍会吸潮。因此,在出厂前变压器内纤维的含水量应降低到0.3%~0.5%,在现场如需吊芯,务必选择晴朗干燥天气,尽量缩短暴露时间。对于长期停运的变压器再重新投入前,需检查是否受潮,有时还可以先预热干燥后再投入运行。