液压减压阀ZDR6DP2-4X/150YM
液压减压阀ZDR6DP2-4X/150YM
液压减压阀ZDR6DP2-4X/150YM
液压减压阀ZDR6DP2-4X/150YM
液压减压阀ZDR6DP2-4X/150YM

液压减压阀ZDR6DP2-4X/150YM

参考价: 订货量:
950 2
920 10

具体成交价以合同协议为准
2020-05-07 11:10:41
1227
属性:
应用领域:化工,石油,地矿,交通,冶金;
>
产品属性
应用领域
化工,石油,地矿,交通,冶金
关闭
武汉百士自动化设备有限公司

武汉百士自动化设备有限公司

中级会员11
收藏

组合推荐相似产品

产品简介

液压减压阀ZDR6DP2-4X/150YM,德国力士乐REXROTH减压阀,ZDR直动型减压阀是叠加阀。它是一种三通阀,即有二次回路卸荷装置的阀。它主要用来降低部分系统的压力。
该阀主要由阀体、控制阀芯、两个压力弹簧、压力调节装置以及可选择的单向阀组成。
用调节装置调节二次压力。

详细介绍

液压减压阀ZDR6DP2-4X/150YM,德国力士乐REXROTH减压阀,现货库存,*,武汉百士自动化设备有限公司供应;

ZDR直动型减压阀是叠加阀。它是一种三通阀,即有二次回路卸荷装置的阀。它主要用来降低部分系统的压力。
该阀主要由阀体、控制阀芯、两个压力弹簧、压力调节装置以及可选择的单向阀组成。
用调节装置调节二次压力。
阀是常开状态的,也就是说油可以畅通地由通道P流向P1 (DP型),或从A流到A1(DA型)。
P1腔的压力油经控制通道流到阀芯的左端,使阀芯压在弹簧上。当P1腔的压力(即负载)超过调节弹簧的调定值时,阀芯在调节区域内移
动,以保持其P1腔的压力恒定。
控制油是从P1腔经通道引入的。P1腔的压力由于外负载的作用而继续升高,则使阀芯压缩弹簧使压力油经阀芯上的孔(流到T腔(卸荷),则压力不再升高,从而实现过载保护。
泄漏油是通过弹簧腔(7)排到油箱的。
“DA”可选择单向阀,油从A1腔流回。
在连接口安装压力表,可检测二次压力值。
ZDR,,D型减压阀是叠加板式减压阀。它是一种三通阀,即有二次回路保护装置的阀。该阀主要用来降低系统的压力。
该阀主要是由阀体、控制阀芯、两个压力弹簧、压力调节装置以及可以选择的单向阀组成。
旋转压力调节装置可调节二次压力。
在静止时阀处于开启状态,也就是说油可以畅通地由通道P流向通道P1(DP型)从A流向A1 (DA型)和从B流向B1 (DB 型)。P1腔的压力油经控制通道流到阀芯的左侧,使阀总压再弹簧上。当P1腔的压力(即负载)超过调节弹簧的调节值时,阀芯在调节区域内移动,以保持其P1腔压力的恒定。
控制油是从P1腔经通道(5)引入的。P1腔的压力由于外负载的作用而继
续升高,则推动阀芯压缩弹簧使压力油经阀芯上的孔(7)流到T腔压力不再升
高,从而实现了过载保护。
泄漏油是通过弹簧腔(8)排到油箱的。“DA”和DB型减压阀,可安装单
向阀,油可从A1流到A和B1流到B。在压力表连接口(9) 可测得二次压力数
值。

作用式简单的减压阀,直接作用式减压阀,带有平膜片或波纹管。因为它是独立减压阀结构,因此无需在下游安装外部传感线。它是三种减压阀中体积小、使用经济的一种,专为中低流量设计。直接作用式减压阀的精确度通常为下游设定点的+/-10%。
活塞式
该类型的减压阀集两种阀―导阀和主阀―于一体。导阀的设计与直接作用式减压阀类似。来自导阀的排气压力作用在活塞上,使活塞打开主阀。如果主阀较大,无法直接打开时,这种设计就会利用入口压力打开主阀。因此,这种类型的减压阀,与直接作用式减压阀相比,在相同的管道尺寸下,容量和精确度(+/-5%)更高。与直接作用式减压阀相同的是,减压阀内部感知压力,无须外部安装传感线。
薄膜式
在这种类型的减压阀中,双膜片代替了内导式减压阀中的活塞。这个增大的膜片面积能够打开更大的主阀,并且在相同的管道尺寸下,其容量比内导式活塞减压阀更大。另外,膜片对压力变化更为敏感,精确度可达+/-1%。精确性更高是由于下游传感线的定位(阀的外部),其所在位置气体或液体动荡更少。该减压阀非常灵活,可以采用不同类型的导阀(例如压力阀、温度阀、空气装载阀、电磁阀或几种阀同时配套适用)。
工作原理
减压阀是气动调节阀的一个*配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。 按结构形式可分为薄膜式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可分为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式。
直动式减压阀所示为直动式带溢流阀的减压阀(简称溢流减压阀)的结构图。
溢流减压阀是靠进气口的节流作用减压,靠膜片上力的平衡作用和溢流孔的溢流作用稳压;调节弹簧即可使输出压力在一定范围内改变。为防止以上溢流式减压阀徘出少量气体对周围环境的污染,可采用不带溢流阀的减压阀(即普通减压阀)。

先导式减压阀
内部先导式减压阀当减压阀的输出压力较高或通径较大时,用调压弹簧直接调压,则弹簧刚度必然过大,流量变化时,输出压力波动较大,阀的结构尺寸也将增大。为了克服这些缺点,可采用先导式减压阀。先导式减压阀的工作原理与直动式的基本相同。先导式减压阀所用的调压气体,是由小型的直动式减压阀供给的。若把小型直动式减压阀装在阀体内部,则称为内部先导式减压阀;若将小型直动式减压阀装在主阀体外部,则称为外部先导式减压阀。与直动式减压阀相比,增加了由喷嘴4、挡板3、固定节流孔9及气室B所组成的喷嘴挡板放大环节。当喷嘴与挡板之间的距离发生微小变化时,就会使B室中的压力发生根明显的变化,从而引起膜片10有较大的位移,去控制阀芯6的上下移动,使进气阀口8开大或关小、提高了对阀芯控制的灵敏度,即提高了稳压精度。
在主阀体外部还有一个小型直动式减压阀由它来控制主阀。此类阀适于通径在20mm以上,远距离(30m以内)、高处、危险处、调压困难的场合。 

液压减压阀ZDR6DP2-4X/150YM

R900409967 ZDR6DP1-4X/75YM
R983038184 ZDR6DP1-4X/75YMIN010
R983049195 ZDR6DP1-4X/75YMSO145IN010
R900430189 ZDR6DP1-4X/75YM/12
R901357827 ZDR6DP1-4X/75YM/63
R900468696 ZDR6DP1-4X/75YMJ
R900506336 ZDR6DP1-4X/75YMV
R900437310 ZDR6DP1-4X/75YMV/12
R900546676 ZDR6DP2-4X/140YM
R900911010 ZDR6DP2-4X/150-100YM
R901358792 ZDR6DP2-4X/150-110YM
R900579739 ZDR6DP2-4X/150-120YM
R901393920 ZDR6DP2-4X/150-120YM=NE
R900743469 ZDR6DP2-4X/150-120YMJ
R901264573 ZDR6DP2-4X/150-135YM
R900559464 ZDR6DP2-4X/150-140YM
R901033692 ZDR6DP2-4X/150-45YM
R901335263 ZDR6DP2-4X/150-50YM
R901339573 ZDR6DP2-4X/150-60YM
R901214742 ZDR6DP2-4X/150-65YM
R901160122 ZDR6DP2-4X/150-70YM
R901315999 ZDR6DP2-4X/150-70YMV
R901025657 ZDR6DP2-4X/150-75YM
R900743898 ZDR6DP2-4X/150-80YM
R900743468 ZDR6DP2-4X/150-80YMJ
R900776671 ZDR6DP2-4X/150-90YM
R901357530 ZDR6DP2-4X/150P100YM
R901302423 ZDR6DP2-4X/150P140YM
R900483787 ZDR6DP2-4X/150YM

减压阀的常见故障及排除.
减压阀的常见故障有调压失灵、阀芯径向卡紧、工作压力调定后出油口压力自行升高、噪声、压力波动及振荡等。
(一)调压失灵
调压失灵有如下一些现象:
调节调压手轮,出油口压力不上升。其原因之一是主阀芯阻尼孔堵塞、阻尼器和阻尼器堵塞,出油口油液不能流入主阀上腔和导阀部分前腔,出油口压力传递不到锥阀上,使导阀失去对主阀出油口压力调节的作用。又因阻尼孔堵塞后,主阀上腔失去了油压P3的作用,使主阀变成一个弹簧力很弱的直动型滑阀,故在出油口压力很低时就将主阀减压口关闭,使出油口建立不起压力。另外,主阀减压口关阀时,由于主阀芯卡住,锥阀未安装在阀座孔内,外控口未堵住等,也是使出油口压力不能上升的原因。
出油口压力上升后达不到额定数值,其原因有调压弹簧选用错误,变形或压缩行程不够,锥阀磨损过大等原因。
调节调压手轮,出油口压力和进油口压力同时上升或下降,其原因有锥阀座阻尼小孔堵塞,阻尼器堵塞,泄油口堵住和单向阀泄漏等原因。
锥阀座阻尼小孔堵塞,阻尼器堵塞后,出油口压力同样也传递不到锥
阀上,使导阀失去对主阀出油口压力调节作用。又因阻尼小孔堵塞后,使无先导流量流经主阀芯阻尼器,使主阀上、下腔油液压力相等,主阀芯在主阀弹簧力的作用下处于下部位置,减压口通流面积为大,所以油口压力就随进油口压力的变化而变化。
如泄油口堵住,从原理上来说,等于锥阀座阻尼小孔堵塞,阻尼器堵塞。这时出油口压力虽能作用在锥阀上,但同样也无先导流量流经主阀芯阻尼器,阻尼器,减压口通流面积也为大,故出油口压力也跟随进油口压力的变化而变化。
当单向减阀的单向阀部分泄漏严重时,进油压力就会通过泄漏处传递给出油口,使出油口压力也会跟随进油口压力的变化而变化。另外,当主阀减压口处于全开位置时,由于主阀芯卡住,也是使出油口压力随进油口压力变化的原因。
调节调压手轮时,出油口压力不下降。其原因主要由于主阀芯卡住引起。出口压力达不到低调定压力的原因,主要由于先导阀中“O”形密封圈与阀盖配合过紧等。
(二)阀芯径向卡紧
由于减压阀和单向减压阀的主阀弹簧力很弱,主阀芯在高压情况下容易发生径向卡紧现象,而使阀的各种性能下降,也将造成零件的过度磨损,并缩短阀的使用寿命,甚至会使阀不能工作,因此必须加以消除。
(三)工作压力调定后出油口压力自行升高
在某些减压控制回路中,如用来控制电液换向阀或外控顺序阀等,当电液换向阀或外控制顺序阀换向或工作后,减压阀出油口的流量即为零,但压力还需保持原先调定的压力。在这种情况下减压阀的出油口压力往往会升高,这是由于主阀泄漏量过大所引起。
在这种工作状况中,因减压阀出口流量变为零,流量流经减压口的流量只有先导流量,由于先导流量很小,一般在2升/分以内,因此主阀减压口基本上处于全关位置,先导流量由三角槽或斜面处流出。如果主阀芯配合过松或磨损过大,则主阀泄漏量增加。按流量连续性定理,这部分泄漏量也必须从主阀阻尼孔内流出流经阻尼孔的流量即由原有的先导流量和这部分泄漏量二部分组成。因阻尼孔面积和主阀上腔油液压力P3未变(P3由已调整好的调压弹簧预压缩量确定),为使通过阻尼孔的流量增加,而必然引起主阀下腔油液压力P2的升高。因此,当减压阀出口压力调定好后,如果出口流量为零时,出口压力会因主阀芯配合过松或磨损过大而升高。
(四)噪声、压力波动及振动
由于减压阀是一个先导式的双级阀,其导阀部分和溢流阀的导阀部分通用,所以引起噪声和压力波动的原因也和溢流阀基本相同。减压阀在超流量使用中,有时会出现主阀振荡现象,使出油口压力不断地升
压一卸荷一升压一卸荷,这是由于无穷大的流量使液流力增加所致。当流量过大时,软弱的主阀弹簧平衡不了由于过大流量所引起的液流力的增加,因此主阀芯在液流力作用下使减压口关闭,出油口压力和流量即为零,则液流力即也为零,于是主阀芯在主阀弹簧力作用下,又使减压口打开,出油口压力和流量又增大,于是液流力又增加,使减压口关闭,出油口压力和流量又为零。这样就形成主阀芯振荡,使出油口压力不断地变化,因此减压阀在使用时不宜超过推荐的公称流量。

液压是机械行业、机电行业的一个名词。液压可以用动力传动方式, 成为液压传动。液压也可用作控制方式,称为液压控制。
液压传动是以液体作为工作介质,利用液体的压力能来传递动力。
液压控制是以有压力液体作为控制信号传递方式的控制。用液压技术构成的控制系统称为液压控制系统。液压挖制通常包括液压开环挖制和液压闭环控制。液压闭环挖制也就是液压伺服控制,它构成液压伺服系统,通常包括电气液压伺服系统(电液伺服系统)和机械液压同服系统(机液伺服系统,或机液伺服机构)等。
一个完整的液压系统由五个部分组成,即能源装置、执行装置、控制调节装置、辅助装置、液体介质。液压由于其传递动力大,易于传递及配置等特点,在工业、民用行业应用广泛。液压系统的执行元件(液压缸和液压马达)的作用是将液体的压力能转换为机械能,从而获
得需要的直线往复运动或回转运动。液压系统的能源装置(液压泵)的作用是将原动机的机械能转换成液体的压力能。
液压系统组成
一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和工作介质。
动力元件的作用是将原动机的机械能转换成液体的压力能。动力元件指液压系统中的液压泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵、柱塞泵、螺杆泵。
执行元件的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。执行元件有液压缸和液压马达。
挖制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。

上一篇:电气比例阀的功能介绍 下一篇:比例阀的功能及需要注意的事项
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :