其他品牌 品牌
经销商厂商性质
上海市所在地
卡乐电子膨胀阀驱动器EVD0000E50
CAREL凭借比例式调节和出色的技术和功能特性展示了在电子膨胀阀(EXV)方面的解决方案。
EXV系列可以被用在空调和低温、常 温制冷领域中的很多应用中,并且可 确保与常用的制冷剂兼容。
EXV技术的使用与机械式膨胀阀相比可 确保节能,在短时间内就收回成本。
此外,已经证明和验证了,在商业制冷 和计算机房空调应用中,使用EXV电子膨 胀阀所达到的能耗降低平均每年为15 ~ 20%,基于应用,季节峰值高达30%。
卡乐电子膨胀阀驱动器EVD0000E50
EXV 电子膨胀阀选型指南
1. 简介
一个阀的膨胀能力是由阀两侧的
因此阀的大小必须根据大流量和运行状态来选择,端口压头ΔPV为小值,进而在制冷剂入口的阀压力Pin为小值,同时制冷剂出口的阀压力Pout为大值。
EXV | 膨胀阀 |
ev | 蒸发器 |
sa | 液体 |
k | 压缩机 |
co | 冷凝器 |
ir | 液体储存器 |
sv | 电磁阀 |
fd+sg | 干燥器+流量指示器 |
pcond | 压缩机排气压力 |
tcond | 饱和排气温度 |
pevap | 压缩机吸气压力 |
tevap | 饱和吸气温度 |
pin | 阀入口压力 |
pout | 阀出口压力 |
tliq | 有效液体入口温度 |
ΔPC | 压头 |
ΔPV | 通过阀的压差 |
ΔPL | 低压侧的压降 |
ΔPH | 高压侧的压降 |
ΔH | 冷凝器/阀高度差 |
必须注意通过阀的压降ΔPV (= Pin – Pout)通常与压缩机产生的压头ΔPC (= Pcond – Pevap)差别非常大;这是由于:
• 压降ΔPH是在阀、管路、冷凝器,以及压缩机和阀之间的干燥器中;
• 压降ΔPL是在汽液分离器、蒸发器、管路、阀、液体分配器(如果安装了)中;
• 柱压力是由于冷凝器和阀之间管道的液柱产生的,相当于高度差ΔH与液体的密度的乘积,大约为每米0.1 bar。
此外,液体入口温度对阀的制冷量有非常大的影响。
实际上,膨胀的制冷剂流量和运行压力相同,当液体温度Tliq下降(由于过冷度,这在任何情况下必须是低于饱和冷凝温度Tcond,从而防止阀吸入蒸汽,而导致性能降低),产生的制冷量会有相当可观的增加。
2. 设计数据
要使用选型表格确定阀的大小规格,必须提供下列设置数据:
a. 所使用的制冷剂类型
b. 冷凝温度Tcond, 蒸发温度Tevap (°C) = 设计饱和冷凝和饱和蒸发温度(分别与Pcond, Pevap相对应)
c. CAP (kW) = 常规运行条件下机组的制冷量
d. ?PH, ?PL (bar)= 在设计条件下,低压和高压侧中各自的压降
e. ?H (m)= 冷凝器和膨胀阀的高度差
f. Tliq (°C)= 阀入口的液态制冷剂温度
3. 阀选型步骤
1. 确定设计的压头ΔPC (= Pcond – Pevap),以bar为单位;必须使用可获得的小出口压力Pcond和大吸气压力Pevap。如果,不用压力,已经知道了饱和冷凝温度和饱和蒸发温度,可以在所选择的制冷剂所属的选型表中,表格1中计算出ΔPC。
2. 计算通过阀的压差ΔPV,压头ΔPC (= Pcond – Pevap) 减去高压侧和低压侧中的压降ΔPH和ΔPL,将柱压力考虑进去,根据下面的公式计算(ΔH的表示单位为米)
ΔPV = ΔPC - ΔPH - ΔPL + 0,1 × ΔH
注意:乘数0.1 × ΔH(为负数,如果ΔH < 3-4 m)必须加上,如果冷凝器比阀高的话,反之必须减掉。
3. 确定阀入口的液体温度Tliq,在表2中确定修正系数CF,以修正机组的名义制冷量。如果没有更精确的信息,则假定Tliq = Tcond – 5°C
4. 制冷量CAP乘与系数CF得到阀的额定值
5. 在表3中,确定与压差相关的格,接近于在第2点中计算出来的ΔPV。根据饱和蒸发温度Tevap确定阀的型号,这个阀的制冷量将比上面计算出来的额定值高。
Tevap. | 4 | 6 | 8 | 10 | 12 | 14 | 17 |
E2V05 | 1,2 | 1,4 | 1,7 | 1,9 | 2 | 2,2 | 2,4 |
E2V09 | 1,8 | 2,2 | 2,5 | 2,8 | 3,1 | 3,4 | 3,7 |
E2V11 | 3,2 | 3,9 | 4,5 | 5 | 5,5 | 6 | 6,6 |
E2V14 | 4,9 | 6 | 6,9 | 7,7 | 8,5 | 9,1 | 10,1 |
E2V18 | 6,9 | 8,5 | 9,8 | 11 | 12 | 13 | 14,3 |
E2V24 | 13,8 | 16,9 | 19,5 | 21,8 | 23,9 | 25,8 | 28,5 |
E2V30 | 21,9 | 26,9 | 31 | 34,7 | 38 | 41 | 45,2 |
E2V35 | 27,8 | 34,1 | 39,4 | 44 | 48,2 | 52,1 | 57,4 |
E3V45 | 49 | 59 | 69 | 77 | 84 | 91 | 100 |
E3V55 | 70 | 86 | 99 | 111 | 121 | 131 | 144 |
E3V65 | 99 | 121 | 140 | 156 | 171 | 185 | 204 |
E4V85 | 129 | 157 | 182 | 203 | 223 | 240 | 265 |
E4V95 | 179 | 219 | 253 | 283 | 309 | 334 | 368 |
E6V | 585 | 716 | 827 | 925 | 1013 | 1094 | 1206 |
表3:表中等效制冷量值指的是阀入口液体温度等于38°C的值。对于温度高于38°C时,在表中确定具有等效额定制冷量德阀是高于或等于额定制冷量CAP乘以表2中所列出的修正系数。考虑到设计数据中的各种不确定性,表中的值相当于大有效制冷量地80%。