代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1

代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1

参考价: 面议

具体成交价以合同协议为准
2024-05-16 18:51:34
1469
产品属性
关闭
深圳市泽拓生物科技有限公司

深圳市泽拓生物科技有限公司

中级会员8
收藏

组合推荐相似产品

产品简介

代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1
厂家直接订货、联邦快递直达、交期迅速。有需求的老师及同学可放心购买!!!

详细介绍

只用于动物实验研究等

Product List

All our DWCNT come packed as dry powders, which can be dispersed within the user's solvent of choice.

Double-Walled Carbon Nanotube Powders

Product codeM2016L1
Outer Diameter2-4 nm
Internal Diameter1-3 nm
Length~50 μm
Specific Surface Area350 m2.g-1
Purity> 60%
MSDS 
Sale Quantities250 mg, 500 mg, 1 g
Packaging InformationLight-resistant bottle

*For larger orders, please us to discuss prices.

Functionalised Double-Walled Carbon Nanotube Powders

Product codeM2017L1M2018L1
Outer Diameter2-4 nm2-4 nm
Internal Diameter1-3 nm1-3 nm
Length~ 50 μm~ 50 μm
Specific Surface Area350 m2.g-1350 m2.g-1
Functional Group-COOH-OH
Functional Group Wt.%~ 2.6%~ 3%
Purity> 60%> 60%
MSDS  
Sale Quantities250 mg, 500 mg, 1g
Packaging InformationLight-resistant bottle

*For larger orders, please us to discuss prices.

What are Double-Walled Carbon Nanotubes?

DWCNTs consist of two individual carbon nanotubes, with one embedded inside the other. The differences in diameters and the chirality of the two different nanotubes lead to a varying degree of interaction between the two, while at the same time the properties of the individual nanotubes being separate from each other. It is this wide variety of possibilities that have made DWCNTs a focus of interest for carbon nanotube research. Varying chirality allows a range of inner-wall outer-wall interactions to occur, because the chirality determines whether the nanotube will be semiconducting or metallic. It is possible to achieve metallic-metallic, semiconducting-metallic, metallic-semiconducting or semiconducting-semiconducting interactions. In addition to this, the metallic and semiconducting properties can vary depending upon the exact lattice parameters, which enables a wide range of possible property combinations.代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1
 

DWCNTs also have a large advantage over single-walled carbon nanotubes, as it is possible to modify the outer nanotube without changing the properties of the inner nanotube. This modification could be either through functionalisation (to add solubilising groups), or the doping of the structure (to alter the properties). This allows the double-walled system to maintain functionality of a single-walled nanotube whilst simultaneously having the solubility of functionalised nanotubes. This combination makes double-walled systems attractive for use as additives in composite materials as it allows high doping concentrations without affecting the properties of the nanotube overall.代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1
 

The biggest barriers for DWCNTs - with regards to further research and commercialisation - are their synthesis and purification. The yields produced by various synthesis techniques can vary from around 50% to 90% for arc discharge. Similarly, for catalytic chemical vapour deposition the yields can vary from 70% to 85%. The remainder of the nanotubes synthesised using these techniques are a mixture of single-walled and multi-walled nanotubes which then need to be purified to obtain individual double-walled nanotubes. The process of purification is much more difficult. Methods such as high-temperature oxidation result in preferential oxidation of single-walled nanotubes over double-walled. However, the process can damage the remaining nanotubes and will leave residual multi-walled contaminants behind. Other processes, such as ultra-centrifugation, can be used to obtain high-purity DWCNT samples and sort double-walled samples by outer diameter. However this process is labour and time intensive making commercialisation and large scale production of high purity DWCNTs difficult.
 

Just like with single-walled carbon nanotubes, there are many different areas in which DWCNT's can be applied due to their impressive mechanical and electrical properties. In addition double-walled nanotubes show an increase in the mechanical strength, thermal stability, and also chemical stability over that of single-walled nanotubes. However, the ability to combine different nanotube types have the potential to result in interesting optical, electronic and mechanical properties that are not possible with single-walled nanotubes, and could result in the most interesting research in the coming years.

Dispersion Guides

Similarly to single-walled carbon nanotubes, DWCNTs are insoluble. But by using a combination of surfactants and ultrasonic vibration, it is possible to disperse and suspend small concentrations of nanotubes. For dispersing in aqueous solutions, we recommend the use of sodium dodecylbenzene sulfonate if an ionic surfactant is suitable. If a non-ionic surfactant is needed, we recommend surfactants with high molecular weights.

Functionalized DWCNT's can be dispersed without the use of surfactants, a maximum of 0.1mg/ml can be achieved for COOH and OH.

Technical Data

General Information

CAS number7440-44-0
Chemical formulaCxHy
Recommended DispersantsDI Water, DMF, THF, Ethanol, Acetone
SynonymsDouble-Walled Carbon Nanotubes, Double Wall Carbon Nanotube, Carbon Nanotube, DWNT, DWCNT, CNT
Classification / Family1d materials, Carbon nanomaterials, Nanomaterials, Polycyclic aromatic hydrocarbons, Thin-film electronics.
Colour / AppearanceBlack, fibrous powder

1D Related Products

Single-Wall Carbon Nanotubes

Single-Wall Carbon Nanotubes

Double-Walled Carbon Nanotubes

Double-Walled Carbon Nanotubes

Multi-Walled Carbon Nanotubes

Double-Walled Carbon Nanotube Publications

上一篇:抗原修复锅 实验室抗原修复锅的使用 下一篇:Hamilton进样针的使用方法和保养
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :