丰江FULLRIVER蓄电池DC17-12 12V17AH含运
丰江FULLRIVER蓄电池DC17-12 12V17AH含运
丰江FULLRIVER蓄电池DC17-12 12V17AH含运
丰江FULLRIVER蓄电池DC17-12 12V17AH含运
丰江FULLRIVER蓄电池DC17-12 12V17AH含运

DC17-12丰江FULLRIVER蓄电池DC17-12 12V17AH含运

参考价: 面议

具体成交价以合同协议为准
2020-11-02 15:02:07
339
属性:
供货周期:现货;规格:12V17AH;货号:951;主要用途:UPS电源;
>
产品属性
供货周期
现货
规格
12V17AH
货号
951
主要用途
UPS电源
关闭
北京恒泰正宇科技有限公司

北京恒泰正宇科技有限公司

免费会员6
收藏

组合推荐相似产品

产品简介

我司所售的蓄电池保证是原厂原装产品,签订合同,38AH以上出现非人为质量问题三年内免费更换同等型号的全新电池,请广大客户放心采购!
丰江FULLRIVER蓄电池DC17-12 12V17AH含运

详细介绍

丰江FULLRIVER蓄电池DC17-12 12V17AH含运

丰江FULLRIVER蓄电池DC17-12 12V17AH含运


丰江铅酸蓄电池的主要性能指标

(1)       安全性能安全性能指标不合格的蓄电池是不可接受的,其中影响大的是爆炸和漏液。爆炸和漏液的发生主要与蓄电池的内压、结构、工艺设计(比如安全阀失效)及应当禁止的不正确操作有关。
(2)       额定容量为了蓄电池的容量,定义了蓄电池的额定容量。额定容量是蓄电池制造的时候,规定蓄电池在一定的放电条件下应该放出的低限度的电量,其单位为Ah。使用条件不同,蓄电池能够放出的容量也不同。
规定的蓄电池放电条件为:
①     蓄电池放电电流。一般所说的就是放电率,针对蓄电池放电电流的大小分别有时间率和电流率。放电时间率是指在一定的放电条件下放电到终止电压的时间长短。依据IEC标准,放电率分别为20小时率、10小时率、5小时率、3小时率、2小时率、1小时率、0.5小时率等。蓄电池的额定容量用C来表示,以不同的放电率得到的蓄电池的容量会不同。


②     放电终止电压。放电电流不同,终止放电电压也不相同。随着放电的进行,蓄电池的端电压会逐步下降。在25℃条件下放电到能够再次反复充电使用的低电压称为放电终止电压。放电率不同,放电终止电压也不相同。一般为10小时率放电的终止电压多数为1.8V/单格,以2小时率方电的终止电压一般为1.75V/单格。低于这个电压时,虽然可以放出稍微多一点的电量,但是容易形成再次充电的容量下降,所以除非特殊情况,不要放电到终止电压。
③     放电温度。需电池在低温时的放电容量小,高温时的容量大,为了统一放电容量就规定了放电温度。


④     蓄电池的实际容量。蓄电池的实际容量反应蓄电池实际存储电量的多少,单位用安时表示(Ah)表示。同样安时数越大,则蓄电池的容量就越大,电动自行车的续行里程就越远。在使用过程中,蓄电池的实际容量会逐步衰减。国家标准规定新出厂的蓄电池的实际容量大于额定容量者为合格蓄电池。如现在市场上电动自行车的蓄电池,以恒定电流5A放电要超过2h,相当于电动自行车在平坦的路上连续行驶2h以上。影响蓄电池容量的因素有极板的构造、充放电电流的大小、电解液的温度及密度等,其中以充放电电流和温度的影响大。如充放电流过大,将使极板上的活性物质变化处于表面,容量则降低很多。蓄电池的放电电流不同,所能够放出的容量也不相同,放电电流越大,能够放出的电量越小。例如电动自行车常用的电流为5A,使用标称10Ah的蓄电池就是2小时率放电,如果采用10小时率放电,可以达到12Ah。这样,该蓄电池如果按照2小时率标称应该是10Ah,如果按照10小时率标称就是12Ah.所以评价蓄电池的容量不仅仅要看蓄电池的标称容量,还要看蓄电池的放电率。电动自行车蓄电池往往标称为10Ah,同一个蓄电池也可以标12Ah和14Ah。再比如,14Ah的许电车也可以标为17Ah。还有一些蓄电池标为20Ah,蓄电池容量标称值大了,但是其容量没有明显的变化。
(3)       内阻蓄电池的内阻是指电流流过蓄电池内部时所受的阻力,铅酸蓄电池的内阻很小,需要用专门的仪器才可以测得到比较准确的结果。一般所指的蓄电池内阻是充电态内阻,即蓄电池充满电时的内阻。与之对应的是放电态内阻,并且不太稳定。蓄电池的内阻越大,蓄电池自身消耗掉的能量越多,其使用效率越低。内阻很大的蓄电池在充电时发热很厉害,使蓄电池的温度急剧上升,对蓄电池和  充电器的影响都很大。随着蓄电池使用次数的增多,由于电解液的消耗及蓄电池内部化学物质活性的降低,蓄电池的内阻会有不同程度的增大,质量越差的蓄电池增大的越快。        蓄电池内部阻抗会因放电量增加而增大,尤其是在放电终止时阻抗大,主要因为放电的进行使得极板内产生不良导体硫酸铅以及电解液比重下降,故放电后务必马上充电。若任其持续放电,则硫酸铅形成安定的白色结晶(即硫化现象)后,即使充电,极板的活性物质亦无法恢复原状,从而将缩短蓄电池的使用寿 命。        温度的下降将导致电解液流动性变差,极板收缩,化学变化迟缓,蓄电池内阻增加。从30℃开始,若温度下降1℃,容量将下降1%左右,其内阻也有所增大。所以在严寒地区,气温在-20℃以下时容量已下降至60%,内阻增大,常感到蓄电池电力不足。在严寒地区易出现过量放电,而在温带地区则经常出现过量充电的问题。所以要使用好蓄电池,必须根据当地的气候条件,针对实际情况,掌握其使用规律。蓄电池的充电必须根据不同情况选择适当的方法并正确的使用充电设备,这样才能提高蓄电池的容量,延长蓄电池的使用寿命。铅酸蓄电池的内阻与镍氢蓄电池及锂离子蓄电池相比较小,即蓄电池容量下降2/3后,仍能提供较大的电流,而电源电压基本稳定,波动较小。而镍氢蓄电池及锂离子蓄电池就不同了。以36V/9Ah锂离子蓄电池为例,当容量下降到原来的1/3后,电流输出为12A时,电压就会有4~5V的波动,即有电流输出时为31V,无电流输出时接近35V。这样在电动自行车应用中,骑行时会出现运行不平稳,时而有输出时而无输出的现象。

 

无火、无烟、无尘……一块废旧铅酸电池经过多道设备和工序,终分离成可供电池生产的原料。这种被命名为“原子经济法”的铅酸蓄电池铅膏直接循环利用工艺研究,目前已在超威集团科技中心实验室获得成功。4月25日,邱定蕃、杨裕生、张国成、张懿、刘炯天等5位中国科学院、中国工程院院士,以及工信部节能司、中科院、中国有色金属协会、中国再生金属协会等齐聚超威,对“原子经济法铅回收项目”进行集体鉴定,*认为该项目颠覆了传统铅回收工艺方法,在节能减排、污染防治和循环利用方面达到世界水平。

据了解,目前全国电动自行车市场保有量已达到1.6亿辆,每年产生的废铅蓄电池超过260万吨。尽管铅酸蓄电池90%以上材料都可以进行回收利用,但现有企业大多采用传统的火法冶炼,再通过电解精铅、加工成铅粉用来生产电池。在火法冶炼中,会产生大量的铅烟、铅尘和铅渣;在电解精铅的过程中,不仅要消耗大量的电能,而且还会产生含铅废水。因此,废旧铅酸电池在回收利用过程中的环境污染和节能减排一直以来都是制约行业发展的瓶颈。

近年来,面对日趋严苛的环境要求和资源压力,作为国内较大的铅酸动力电池制造商,超威集团从行业可持续发展和保护环境、节能减排的角度考虑,决定依托自身的技术优势和研发平台,采取引进院士、校企联合的方式,着手对废旧铅酸电池循环利用进行专项攻关。

2013年3月,超威集团研究院与北京化工学院开始合作,正式成立了“原子经济法铅回收项目”小组,投入300万元,建成了日产10KG氧化铅粉实验室试验线。经过8个月的实验室验证,验证了该项目的工艺可行性。在此基础上,2014年2月,集团追加200万元扩大试验线,日产氧化铅粉达到200KG,进一步验证了该工艺产业化生产的可行性。据悉,超威集团下半年将投入1亿元,建成首条“原子经济法铅回收”量产示范生产试验线。

据了解,“原子经济法铅回收” 项目是与当前国内外废旧铅酸电池“热处理”和“湿处理”截然不同的一种全新的回收方法。该方法是通过原子经济反应,用化学方法将废铅电池转化成可直接利用的铅粉,处理过程中无烟尘、废气、废水排放,回收利用率高达99%,具有高效率、高清洁、低能耗、低成本等优势,是一项*改变铅酸蓄电池回收产业脏、乱、差面貌的重大革命性创新。


(4)       循环寿命循环寿命是指蓄电池可经历的重复充放电次数。蓄电池的寿命和容量成反比关系,循环寿命还与充放电条件密切相关,一般充电电流越大(充电速度越快),循环寿命越短。寿命是表示蓄电池容量衰减速度的一项指标,随着使用的深入,蓄电池容量的衰减是不可避免的,当容量衰减到某规定值时,可以判定寿命终结。按照新制定的电动自行车蓄电池标准,一定容量70%充放电循环次数来表示蓄电池的寿命,合格底线为350次。因此,对于日常交通距离小于30㎞的用户而言,若电机、控制器、充电器等都是良好的,使用方法正确,一组较好的蓄电池的短服役时间达到一年以上应该是可以保证的。容量和寿命是衡量蓄电池性能的主要指标,容量一般以Ah为单位,表明蓄电池储备能量的能力。例如一个标称容量为12Ah的蓄电池,则必须达到以6A放电,放至终止电压3105V(36V)的时间应不小于2h的水平。将这种蓄电池用于电动自行车,载重75kg,在平坦路面上骑行,工作电流约为4A,放电时间应大于3h,时速为20㎞,那么它的理论续行里程将达到50㎞。若考虑途中刹车、启动等因素,采用这种蓄电池的电动自行车的续行里程可达到40~50㎞。一般来说,放电电流越大,蓄电池的寿命越短;放电深度越深,蓄电池的寿命也越短。铅酸蓄电池可以应付短时间的大电流放电,这时候放电深度不深。小电流放电时,即便放电深度稍微深一些,对蓄电池的寿命影响也不大。蓄电池怕连续大电流深度放电。影响铅酸蓄电池寿命的因素有极板的内在因素,诸如活性物质的组成、晶型、孔隙率、极板尺寸、板栅材料和结构等;也取决于一系列外在因素,如放电电流密度、电解液浓度和温度、放电深度、维护状况和储存时间等。

HGL24-12

24

22.3

20.4

14.4

167

6.57

175

6.89

125

4.92

125

4.92

7.70

16.98

M5

120

HGL33-12

33

30.7

28.1

19.8

196

7.72

131

5.16

155

6.10

167

6.57

10.20

22.49

M6

100

HGL38-12

38

35.3

32.3

22.8

198

7.80

166

6.54

170

6.69

170

6.69

13.30

29.32

M6

72

HGL55-12

55

51.2

47.3

34.5

229

9.02

138

5.43

208

8.19

212

8.35

17.20

37.92

M6

63

HGL65-12

65

61.0

57.0

40.3

351

13.82

167

6.57

176

6.93

176

6.93

21.20

46.74

M6

48

HGL90-12

90

84

76.5

54

307

12.09

169

6.65

211

8.31

215

8.46

28.20

62.17

M6

36

HGL100-12

100

93

85

60

328

12.91

172

6.77

214

8.43

220

8.66

30.40

67.02

M6

36

HGL120-12

120

112

102

72

407

16.0

174

6.85

210

8.27

240

9.45

37.60

82.89

M8

27

HGL140-12

140

130

119

84

341

13.43

173

6.81

281

11.06

287

11.30

42.50

93.70

M8

24

HGL180-12

180

167

153

108

530

20.87

209

8.23

214

8.43

218

8.58

55.30

121.92

M8

21

HGL200-12

200

186

170

120

530

20.87

209

8.23

214

8.43

218

8.58

57.60

126.99

M8

21

HGL230-12

230

214

195.5

138

522

20.55

242

9.53

218

8.58

222

8.74

64.50

142.20

M8

18

HGL240-12

240

223

204

144

520

20.47

269

10.59

204

8.03

208

8.19

70.20

154.76

M8

18

HGL260-12

260

242

221

156

521

20.51

269

10.59

220

8.66

224

8.82

75.50

166.45

M8

12

 

 

①                  放电深度。放电深度即使用过程中放电到何程度时开始停止,100%深度指放出全部容量。铅酸蓄电池的寿命受放电深度的影响很大。设计造型时重点要考虑的深循环使用,则铅酸蓄电池会很快失效。因为正极活性物质二氧化铅本身互相结合就不牢,放电时生成硫酸铅,充电时又恢复为二氧化铅,硫酸铅的摩尔体积比氧化铅大,则放电时活性物质体积膨胀。1mo1氧化铅转化为1mo1硫酸铅时,体积增加95%。这样反复收缩和膨胀,就会使二氧化铅粒子之间的相互结合逐渐松弛,易于脱落。若1mo1二氧化铅的活性物质只有2220%放电,则收缩、膨胀的过程就大大降低,结合力破坏变缓,因此,放电深度越深,其循环寿命越短。
②                  过充电程度。过充电时有大量气体析出,这时正极板活性物质遭受气体的冲击,这种冲击会促进活性物质脱落。此外,正极栅合金也遭受严重的阳极氧化而腐蚀,所以蓄电池过充电时会使蓄电池的使用寿命缩短。
③                  温度的影响。铅酸蓄电池的寿命随温度升高而延长。在10℃~35℃之间,温度每升高1℃,增加5~6个循环;在35℃~45℃之间,温度每升高1℃,可延长寿命25个循环以上;温度高于50℃,则因负极硫化容量损失而缩短了寿命。蓄电池的寿命在一定温度范围内随温度升高而延长,这是因为容量随温度升高而增大。如果放电容量不变,则在温度升高时其放电深度降低,而使寿命延长。
④    硫酸浓度的影响。硫酸浓度的增大,虽对正极板容量有利,但蓄电池的自放电增加板栅的腐蚀加速,也促使二氧化铅松散脱落。随着蓄电池中硫酸浓度的增大,循环寿命将缩短。
⑤    放电电流密度的影响。随着放电电流密度的增大蓄电池的寿命将缩短,因为在大电流密度和高硫酸浓度条件下,正极二氧化铅易松散脱落。

浅谈蓄电池UPS技术的六大发展趋势-丰江蓄电池

UPS电源系统作为顺应电力市场需求发展起来的高技术产品,它具有明显的电力保护功能:当市电断电时,不间断地向负载继续供电;在市电不稳定的时候,可以避免负载遭受欠压、浪涌冲击等的危害,并全面地改善供电质量;当供电系统(包括UPS)故障时,能给负载(特别是计算机和网络系统)以全面的保护,并起到过载、短路、电池过放等防护,为负载提供一个稳定的工作环境。

随着IT系统逐步走向集中管理,企业对UPS电源保护系统的应用将更加深入。UPS的应用将呈现出从单机向冗余结构变化,从注重系统的可靠性向注重系统的可用性变化,从单纯供电系统向保证整个IT运行环境变化等趋势。而随着信息技术、电子技术、控制技术的发展,各种*技术已广泛应用在UPS的设计开发和生产过程中,UPS的技术将出现以下六大发展趋势。


一是智能化


智能系统通过对各类信息的分析综合,除完成UPS相应部分正常运行的控制功能外,还应完成对运行中的UPS进行实时监测,对电路中的重要数据信息进行分析处理,从中得出各部分电路工作是否正常等功能;在UPS发生故障时,能根据检测结果,及时进行分析,诊断出故障部位,并给出处理方法;根据现场需要及时采取必要的自身应急保护控制动作,以防故障影响面的扩大;完成必要的自身维护,具有交换信息功能,可以随时向计算机输入或从联网机获取信息。

 

蓄电池是汽车上重要的电气设备之一,也是一种化学电源。它能把电能与化学能相互转化,并向用电器提供电能。

起动发动机时,蓄电池输出的电流一般为150-200a,在低温(-10℃)起动时输出电流高达250-300a。有些人认为:电解质溶液密度越高,蓄电池的容量就越大,电池电压也就越高,并可防止冬季电解质溶液凝固。事实上,电解质溶液密度是以确定原始溶液密度为前提的,补充不同密度的溶液虽可提高蓄电池的电动势,使其端电压和电荷容量增加,但溶液密度过大,粘度增加,内阻增大,反而会使蓄电池的端电压和电荷容量下降。

在蓄电池的使用过程中,应该定期检查蓄电池电解质溶液液面的高度,若其高度太低,会使极板上部与空气接触而被氧化,降低蓄电池的容量,缩短其使用寿命。因此,冬季应半个月检查一次,夏天温度高液体易蒸发,应该一周检查一次。溶液液面高度一般高出极板防护网10mm~15mm为适。

有些人员在日常维护中,检查电解液不足时,一般补加硫酸溶液,但有时电解液减少是加液孔盖扣不严导致泄漏。还有维护人员在收车时添加蒸馏水,结果所加的蒸馏水不能与蓄电池原电解液充分混合,极易使蓄电池自行放电或损坏蓄电池极板,尤其在严寒地区还会造成蓄电池局部凝固,影响使用寿命。出车前添加稀硫酸,可使其与蓄电池原有的电解液充分混合,使蓄电池的性能得到保持。

与其相反的是,有人常忽视对蓄电池的补充充电。如果长期处于亏电状态,容易造成极板硫化。这种慢性硫化,会使蓄电池电荷容量不断下降,直到无力起动,缩短其使用寿命。为使极板上的化学物质正常进行氧化还原反应,减少极板硫化,延长使用寿命,则要对蓄电池进行定期的补充充电。同时也要防止充电过量,否则即使充电电流不大,也会使电解液长时间“沸腾”,除了活性物质表面的细小颗粒易脱落外,还会导致栅架过分氧化,造成活性物质与栅架松散剥离。

二是数字化


UPS采用新的数字信号控制器(DSP)加以数字化的霍儿传感器件,实现了UPS系统的数字化运行。还采用了多重微处理器冗余系统,用多个有独立供应电源的微处理器来控制整流器、逆变器和内部静态旁路,因而提高了系统的数字化程度和可靠性。


三是高频化


*代UPS的功率开关为可控硅,第二代为大功率晶体管或场效应管,第三代为IGBT(绝缘栅双极晶体管)。大功率晶体管或场效应管开关速度比可控硅要高一个数量级,而IGBT功率器件电流容量和速率又比大功率晶体管或场效应管大得多和快的多,使功率变换电路的工作频率高达50kHz。变换电路频率的提高,使得用于滤波的电感、电容以及噪音、体积等大为减少,使UPS效率、动态响应特性和控制精度等大为提高。


四是冗余并机技术


通过开发新的应用技术,可实现UPS内的多模块冗余并机运行,不需另外加设中央控制部件,负载均分,某一模块出现问题时,负载自动转移,维修可带电热插拔,大大提高单台UPS的供电可靠性。再加上多台UPS组成的系统冗余运行,如果某一台UPS单机发生故障,则被立刻关闭,其他的UPS系统会自动承担全部负载,对负载不会产生任何影响。


五是集成化

 
随着信息化的发展,电源保护的应用领域不断扩大和要求不断提高,UPS要达到这些需求难以独善其身,必须对整个用电系统所涉及的环节进行控制,UPS从初始的设备保护和系统保护的纯后备电源技术发展到的信息保护、智能管理和整体机房集成一体化应用,其内涵已扩展到发电、配电、变换、不间断电源、机房、动力设备、电力电缆、数据布线、环境监控及系统管理等方面,已不是初意义上的UPS,UPS设备只是该系统的核心部件。


从UPS的电源技术来看,在电源输出特性的不断优化基础上,对电源输入特性的研究,使电磁兼容性、低谐波污染成为重要指标,谐波处理技术和电磁兼容设计可以改善电源对电网的负载特性,减少对其他设备的*,提高电源的源效应,绿色电源的概念开始为人们所注重。电子技术和计算机技术的发展,除了使UPS的电源性能得到很大提升外,其网络管理可实现远程监控,数字化电源控制技术使产品具备了定制功能,智能化的设计使其成为高度智能化的可监、可控和自适应的设备。


以信息化建设角度,UPS从过去侧重电气性能指标、可靠性和质量方面,发展到统一标准、规范,采用模块化和并联冗余技术,系统地考虑各供、用电设备和环节以及系统TCO,提高UPS用电所涉及的整个系统可靠性、可用性、可管理性、可维护性和可扩展性。集成一体化应用为用户提供了完整和有效的电源应用解决方案,这种拓展方向适应了信息化建设的需要,但是为满足这一需求的变化,对UPS厂商来说,尤其是国内厂商,仍有许多工作要做。


六是绿色化


各种用电设备及电源装置产生的谐波电流严重污染电网,随着各种政策法规的出台,对无污染的绿色电源装置的呼声越来越高。UPS除加装高效输入滤波器外,还应在电网输入端采用功率因数校正技术,这样既可消除本身由于整流滤波电路产生的谐波电流,又可补偿输入功率因数。整流器使用IGBT技术,可将输入功率因数提高到接近于1,对电网的污染已降到了近似阻性负载的水平。

 

上一篇:韩国ROCKET蓄电池ESL40-12 12V40AH导电性好 下一篇:韩国ROCKET蓄电池ES12-12 12V12AH安装调试
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :