明基环保 品牌
生产厂家厂商性质
潍坊市所在地
厌氧反应器内出现泡沫、化学沉淀等不良现象的原因是什么?
厌氧反应器中时会产生大量泡沫,泡沫呈半液半固状,严重时可充满气相空间并带入沼气管道,导致沼气系统的运行困难。
产生泡沫的主要原因是厌氧系统运行不稳定,因为泡沫主要是由于CO2产量太大形成的,当反应器内温度波动或负荷发生突变等情况发生时,均可导致系统运行的不稳定和CO2的产量增加,进而导致泡沫的产生。如果将运行不稳定因素及时排除,泡沫现象一般也会随之消失。在厌氧污泥培养初期,由于CO2产量大而甲烷产量少,也会出现泡沫,随着甲烷菌的培养成熟,CO2产量减少,泡沫一般也会逐渐消失。进水中含蛋白质是产生泡沫的一个原因,而微生物本身新陈代谢过程中产生的一些中间产物也会降低水的表面张力而生成气泡。厌氧生物处理过程中大量产气会产生类似好氧处理的曝气而形成气泡问题,负荷突然升高所带来的产气量突然增加也可能出现泡沫问题。
碳酸钙(CaCO3)沉淀:处理废水钙含量高或利用石灰补充碱度,都会增加产生碳酸钙沉淀的可能性。高浓度的碳酸氢盐和磷酸盐都利于钙的沉淀。
鸟粪石(MgNH4PO4)沉淀:进水中含较高浓度的溶解性正磷酸盐、氨氮和 镁离子时,就会生成鸟粪石沉淀。厌氧处理系统鸟粪石沉淀主要在管道弯头、水泵入口和二沉池进出口等处出现。
UASB厌氧反应器废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没附着的气体向反应器部上升。上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没附着的气体被收集到反应器部的三相分离器的集气室。
UASB厌氧反应器运行三个重要的前提:
①反应器内形成沉降性能良好的颗粒污泥或絮状污泥;
②产气和进水的均匀分布所形成的良好的自然搅拌;
③的三相分离器,能使沉淀性能良好的污泥保留在反应器内。良好的颗粒污泥床的形成,使得机负荷和去除率髙,不需要搅拌,能适应负荷冲击和温度与pH值的变化。
UASB的启动
1、污泥的驯化
UASB设备启动的难特点是获得大量沉降性能良好的厌氧颗粒污泥。加以驯化,一般需要3-6个月,如果靠设备自身积累,投产期长可长达1-2年。实践表明,投加少量的载体,利于厌氧菌的附着,促进初期颗粒污泥的形成;比重大的絮状污泥比轻的易于颗粒化;比甲烷活性高的厌氧污泥可缩短启动期。
2、启动操作要特点
(1)应一次投加足够量的接种污泥;
(2)启动初期从污泥床流出的污泥可以不予回流,以使别轻的和细碎污泥跟悬浮物连续地从污泥床排出体外,使较重的活性污泥在床内积累,并促进其增殖逐步达到颗粒化;
(3)启动开始废水COD浓度较低时,未必就能让污泥颗粒化速度加快;
(4)初污泥负荷率一般在0.1-0.2kgCOD/kgTSS.d左右比较合适;
(5)污水中原来存在的和厌氧分解出来的多种挥发酸未能效分解之前,不应随意提高机容积负荷,这需要跟踪观察和水样化验;
(6)可降解的COD去除率达到70-80%左右时,可以逐步增加机容积负荷率;
(7)为促进污泥颗粒化,反应区内的小空塔速度不可低于1m/d,采用较高的表面水力负荷利于小颗粒污泥与污泥絮凝分开,使小颗粒污泥凝并为大颗粒。
UASB的主要优点是:
1、UASB内污泥浓,平均污泥浓度为20-40gVSS/1;
2、机,水力停留时间短,采用中温发酵时,容积负荷一般为10kgCOD/m3.d左右;
3、混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也一定程度的搅动;
4、污泥床不填载体,节省造价及避免因填料发生堵赛问题;
5、UASB内设三相分离器,通常不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通常可以不设污泥回流设备。
泉州市UASB厌氧反应器*,UASB工艺近年来在内外发展很快,面很宽,在各个行业都,性规模不等。实践证明,它是污水实现资源化的一种技术成熟可行的污水处理工艺,既解决了环境污染问题,又能取得较好的效益,具广阔的空间。
UASB厌氧反应器废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没附着的气体向反应器部上升。上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没附着的气体被收集到反应器部的三相分离器的集气室。
UASB厌氧反应器中的厌氧反应过程与其他厌氧生物处理工艺一样,包括水解,酸化,产乙酸和产甲烷等。通过不同的微生物参与底物的转化过程而将底物转化为终产物——沼气、水等机物
在厌氧消化反应过程中参与反应的厌氧微生物主要以下几种:
① 解—发酵(酸化)细菌,它们将复杂结构的底物水解发酵成各种机酸,乙醇,糖类,氢和二氧化碳;
② 乙酸化细菌,它们将1步水解发酵的产物转化为氢、乙酸和二氧化碳;
③ 产甲烷菌,它们将简单的底物如乙酸、甲醇和二氧化碳、氢等转化为甲烷 。
UASB厌氧反应器废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没附着的气体向反应器部上升。上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没附着的气体被收集到反应器部的三相分离器的集气室。
气液固三相分离器是UASB的重要组成部分,它对污泥床的正常运行和获良好的出水水质起十分重要的,因此设计时应给予别的重视。
根据经验,三相分离器应满足以下几特点要求:
1、混和液进入沉淀区之关,必须将其中的气泡予以脱出,防止气泡进入沉淀区影响沉淀;
2、沉淀器斜壁角度约可大于45度角;
3、沉淀区的表面水力负荷应在0.7m3/m2.h以下,进入沉淀区前,通过沉淀槽低缝的流速不大于2m/m2.h;
4、处于集气器的液一气界面上的污泥要很好地使之浸没于水中;
5、应防止集气器内产生大量泡沫。
2、3两个条件可以通过适当选择沉淀器的深度-面积比来加以满足。
UASB厌氧反应器:
废水厌氧生物技术由于其巨大的处理能力和潜在的空间,一直是水处理技术研究的热特点。从传统的厌氧接触工艺发展到现今流行的UASB工艺,废水厌氧处理技术已日趋成熟。随着发展与资源、能耗、占地等因素间矛盾的进一步突出,现的厌氧工艺又面临着严峻的挑战,尤其是如何处理发展带来的大量高浓度机废水,使得研发技术更优化的厌氧工艺非常必要。内循环厌氧处理技术(以下简称IC厌氧技术)就是在这一背景下产生的处理技术,它是20世纪80年代中期由荷兰PAQUES研发成功,并推入废水处理工程市场,目前已成功于土豆加工、啤酒、食品和柠檬酸等废水处理中。实践证明,该技术去除机物的能力远远过普通厌氧处理技术(如UASB),而且IC反应器容积小、、、,是一种值得推广的厌氧处理技术。
基本要求:
(1)为污泥絮凝提供利的物理、化学和力学条件,使厌氧污泥获得并保持良好的沉淀性能;
(2)良好的污泥床常可形成一种相当稳定的生物相,保持定的微生态环境,能抵抗较强的扰动力,较大的絮体具良好的沉淀性能,从而提高设备内的污泥浓度;
(3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。
反应器原理
UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力下沉降。沉淀斜壁上的污泥沿着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
泉州市UASB厌氧反应器*
明基环保设备有限公司是一家环保机械设备的制造企业。公司地处山东潍坊市,区位*,交通便捷,基础设备齐全。本着脚踏实地,稳步发展,保护环境,造福人类的宗旨,坚持诚实守信,先做人后做事的原则,保证为广大用户提供质优的产品和良好的售后服务。