其他品牌 品牌
经销商厂商性质
北京市所在地
GMP蓄电池PM100-12 12V100AH安装报价
面议GMP蓄电池PM90-12 12V90AH含税报价
面议GMP蓄电池PM80-12 12V80AH项目报备
面议GMP蓄电池PM70-12 12V70AH网点销售
面议GMP蓄电池PM65-12 12V65AH规格及型号
面议GMP蓄电池PM38-12 12V38AH全国报价
面议GMP蓄电池PM33-12 12V33AH支持报备
面议GMP蓄电池PM31-12 12V31AH免费安装
面议GMP蓄电池PM26-12 12V26AH三年保修
面议GMP蓄电池PM24-12 12V24AH质保三年
面议GMP蓄电池PM17-12 12V17AH上门安装
面议GMP蓄电池PM12-12 12V12AH包含安装
面议GMP蓄电池PM10-12 12V10AH产品报价
GMP蓄电池PM10-12 12V10AH产品报价
蓄电池失效模式
1)电池失水
阀控式铅酸蓄电池不逸出气体是有条件的,即:电池在存放期间内应无气体逸出;充电电压在2.35V/单体(25℃)以下应无气体逸出;放电期间内应无气体逸出。但当充电电压超过2.35V/单体时就有可能使气体逸出,此时电池体内短时间产生了大量气体来不及被负极吸收,压力超过某个值时,便开始通过单向排气阀排气,排出的气体虽然经过滤酸垫滤掉了酸雾,但毕竟使电池损失了气体(也就是失水),所以阀控式密封铅酸蓄电池充电不能过充电。
2)负极板硫酸化
当阀控式密封铅酸蓄电池的荷电不足时,在电池的正负极栅板上就有PbSO4这一现象称为活性物质的硫酸化,硫酸化使电池的活性物质减少,降低电池的有效容量,也影响电池的气体吸收能力,久之就会使电池失效。
3)正极板腐蚀
由于电池失水,造成电解液比重增高,过强的电解液酸性加剧正极板腐蚀。
4)热失控
热失控是指蓄电池在恒压充电时,充电电流和电池温度发生一种累积性的增强作用,并逐步损坏蓄电池。从目前蓄电池使用的状况调查来看,热失控是蓄电池失效的主要原因之一。热失控的直接后果是蓄电池的外壳鼓包、漏气,电池容量下降,严重的还会引起极板形变,后失效。浮充电压是蓄电池长期使用的充电电压,是影响电池寿命至关重要的因素。一般情况下,浮充电压定为2.23
~2.25V/单体(25℃)比较合适。
蓄电池在后备电源运行中存在问题
1)蓄电池寿命无法达到设计要求
在实际中,蓄电池在三年时就会出现严重劣化,使用超过5年的蓄电池很少。原因是在使用中对蓄电池没有有效、合理地进行管理以及维护,造成蓄电池在早期出现劣化,并且没有及时发现落后电池,致使劣化积累、加剧,导致蓄电池过早报废。
2)对蓄电池的运行情况、性能状况不明
蓄电池组中如果有落后的蓄电池,可以通过一定深度的放电、充电循环,在一定程度上减少落后的差别。但由于没有良好的管理手段,对于蓄电池内部性能参数,如蓄电池的内阻、当前的剩余容量,无法十分清楚地了解,所以相应的措施就无法实施。
3)对于单体电池而言,充电机制可靠性需要完善
由于目前国内直流系统的充电机制不是非常的完善,在实际中存在电压漂移的情况,蓄电池长期处于浮冲状态,如果浮冲电压偏离正常的范围,就会造成蓄电池的过充或欠充,长期的过充或欠充对于蓄电池的性能影响非常大。
4)单体电池之间不均衡
目前蓄电池组由数量很多的单体电池组成,实际运行中存在单体电池之间充电电压、内阻等差异较大的情况,特别是在浮充下,这种不均衡现象显得非常严重。个别落后电池充电不*,如果没有及时发现并处理,这种落后就会加剧。如此反复,这种不均衡就加重,致使落后电池失效,从而引起整组蓄电池的容量过早丧失。
5)无人值守站点的维护工作缺乏良好的管理监测手段
对于许多无人值守的站点,由于没有网络管理监测的手段,对于蓄电池的维护更加薄弱,特别是对于蓄电池的运行情况以及性能状况,不能清楚的了解。大量的维护与管理工作由人工进行,同时数据的整理与分析需要维护人员有较强的专业知识。
6)蓄电池终止寿命无法提前判断以及蓄电池的更换缺乏科学的依据
我们对于蓄电池的寿命终止,希望能够提前作出判断,为蓄电池的更换赢得时间。但目前对于蓄电池寿命的终止,没有一个可靠的手段,仅仅根据多年的经验来进行。所以在实际中,往往是蓄电池放电的容量低于低要求后,才在放电中发现蓄电池的寿命终止。
产品使用与维护
① 循环使用充电电压为14.7-14.8V/只,电池放电后要及时充电,初始电流不大于0.2C(A),时间大于12小时,浮充使用充电电压为13.65±0.05V/只,要坚持长期浮充保持电量充足。
② 不宜倒置或装入密封容器中充电与使用,不要接近火源或高温的地方安装和储存,不宜过放电,如过放电应立即补充电,否则将影响容量与使用寿命(放电终止电压不低于9.6V/只)
③ 该电池已充电出厂,应储存在常温干燥通风处,储存6个月后,应对电池补充电一次。红色端为正极,黑色端为负极,储存和使用中绝不可接错或短路。安装使用时连接的部件必须紧固,避免接触不良而烧断极柱
北京GMP免维护蓄电池代理中心
型号 | 电压(V) | 容量(Ah) | 大外型尺寸(mm) | 参考重量(KgS) | |||
|
|
| 长 | 宽 | 高 | 总高 |
|
PM7-12 | 12 | 7 | 151 | 65 | 95 | 100 | 2.6 |
PM7.2-12 | 12 | 7.2 | 151 | 65 | 95 | 100 | 2.7 |
PM8-12 | 12 | 8 | 151 | 65 | 95 | 100 | 2.8 |
PM10-12 | 12 | 10 | 151 | 98 | 95 | 100 | 3.6 |
PM12-12 | 12 | 12 | 151 | 98 | 95 | 100 | 4.2 |
PM17-12 | 12 | 17 | 180 | 75 | 167 | 167 | 6.0 |
PM24A-12 | 12 | 24 | 175 | 165 | 125 | 125 | 8.5 |
PM24B-12 | 12 | 24 | 165 | 125 | 174 | 179 | 8.7 |
PM26-12 | 12 | 26 | 175 | 165 | 125 | 125 | 9.0 |
PM31-12 | 12 | 31 | 196 | 131 | 171 | 175 | 11.0 |
PM33-12 | 12 | 33 | 196 | 131 | 171 | 175 | 11.0 |
PM38-12 | 12 | 38 | 197 | 165 | 170 | 170 | 13.5 |
PM65-12 | 12 | 65 | 350 | 166 | 175 | 175 | 20.5 |
PM70-12 | 12 | 70 | 260 | 169 | 208 | 213 | 22 |
PM80-12 | 12 | 80 | 331 | 173 | 214 | 242 | 25.5 |
PM90B-12 | 12 | 90 | 306 | 169 | 208 | 213 | 26.5 |
PM100A-12 | 12 | 100 | 331 | 173 | 214 | 242 | 28 |
PM120B-12 | 12 | 120 | 407 | 173 | 210 | 240 | 35 |
PM200B-12 | 12 | 200 | 522 | 240 | 218 | 244 | 59 |
PM230-12 | 12 | 230 | 520 | 269 | 203 | 203 | 64 |
目前,蓄电池监测模块大多都是电压巡检仪,在线监测电池的浮充电压,在超出设定值时给出报警。相对以前的整组电压监测方式来说,单体电压监测是前进了一大步,但对于电池的长期运行过程中的容量衰减以至失效的监测,电压能反映的问题非常有限:100Ah的电池和衰减至10Ah的电池在浮充电压上的差异很难区别开来。因此,需要从蓄电池的失效模式进行探讨,从而解决蓄电池的监测问题。
阀控铅酸蓄电池的失效模式
对于阀控式铅酸电池,通常的性能变坏机制有以下几种情况:
热量的积累
开口式铅酸电池在充电时,除了活性物质再生外,还有硫酸电解质中的水逐步电解生成氢气和氧气。当气体从电池盖出气孔通向大气时,每18克水分解产生11.7千卡的热。
而对阀控式铅酸电池来说,充电时内部产生的氧气流向负极,氧气在负极板处使活性物质海绵状铅氧化,并有效低补充了电解而失去的水。由于氧循环抑制了氢气的析出,而且氧气参与反应又生成水。这样虽然消除了爆炸性的气体混合物的排出问题,但是这种密封式使热扩散减少了一种重要途径,而只能通过电池壳壁的热传导作为放热的途径。因此,阀控铅酸电池的热失控问题成为一个经常遇到的问题。
阀控铅酸电池依赖于电壳壁的热传导来散热,电池安装时良好的通风和较低的室温是很重要的条件。为了进一步降低热失控的危险性,浮充电压通常具体视不同的生产者和不同室温而定。厂家一般都给出电池的浮充电压和温度补偿系数。
UPS蓄电池维护的重要性
UPS电源是企业数据中心的动力保证,确保了供电的连续性和安全性,时刻发挥着重要的安全保障作用。蓄电池是UPS重要组成部分,作为动力提供的后保障,无疑是UPS电源的后一道保险。据调查,由UPS电源无法正常供电而引发的数据中心事故中有50%以上是由蓄电池故障引发的,蓄电池是UPS电源事故发生率居高不下的一个环节,由此可见提高蓄电池运行安全可靠的必要性和迫切性。
UPS蓄电池普遍缺乏正确的日常维护和准确的检测手段,这为以后UPS正常供电埋下了重大安全隐患,有部分用户通常是等到事故发生,才知道是UPS电池出现故障无法正常供电了。如何提高UPS电源中蓄电池监测管理手段和水平,降低或杜绝蓄电池事故发生率,无疑对于用户具有很高的经济价值。提高UPS蓄电池运行的安全可靠性,是目前困扰用户普遍存在的难题。
UPS蓄电池维护现状及安全隐患
1、蓄电池寿命无法达到设计要求,在实际应用中,蓄电池往往在使用1年后就开始出现劣化,使用超过3年的蓄电池劣化程度非常严重,几乎很少能够达到标称容量。这其中存在两个方面的问题,其一,蓄电池厂家对于蓄电池的使用寿命年限是在较为理想的状态下预测的;其二,在使用中对于蓄电池的管理以及维护,没有有效的进行,造成蓄电池在劣化早期,没有及时发现落后电池,致使劣化积累、加剧,容量累积亏损导致蓄电池过早报废。
2、 对于蓄电池的充放电缺乏记录及监控,蓄电池运行情况不明。
3、由于没有良好的手段以及管理,蓄电池的使用者对于蓄电池运行情况缺乏足够的了解,特别是对于蓄电池历史数据的整理以及分析。而这些数据的整理与分析需要较强的专业知识。
4、对于蓄电池性能状况不明,特别是UPS蓄电池是否具备瞬间大电流供电能力不了解?
5、对于蓄电池性能状况,如蓄电池的电压均衡性、当前容量,无法清楚实时了解。
6、缺乏温度补偿及环境温度的监测。
7、UPS蓄电池缺乏检测手段和维护仪表,重视程度不足。
8、目前有相当多蓄电池的维护人员,受到误导,认为“免维护”就是不需维护。认为采用三年到期就更换电池的措施能一劳永逸解决并代替维护检测。