Biomomentum多轴机械测试仪应用:聚合物凝胶的多峰表征
时间:2021-03-18 阅读:402
Biomomentum多轴机械测试仪Mach-1应用:聚合物凝胶的多峰表征,以确定测试方法对观察到的弹性模量的影响
David M.Kingsley,Caitlin H.McCleery,Christopher DLJohnson,Michael TKBramson,Deniz Rende,Ryan J.Gilbert,David T.Corr
《生物医学材料力学行为杂志》,于2019年1月10日在线提供,
机械复制天然组织的材料的需求推动了各种新型生物材料的开发和表征。然而,材料和表征技术多样性的结果是在该领域内缺乏共识,没有明确的方法来比较通过不同方式测量的值。这可能导致难以在整个研究团体中复制研究结果;近的证据表明,不同的模态不会在材料中产生相同的机械测量值,并且无法在不同的测试平台之间进行直接比较。在此,我们通过分析由五种典型生物材料机械表征技术确定的弹性模量来检查“材料特性”是否特定于表征模态:无限制压缩,张力测定,流变测定,和微观压痕的宏观层面,并在微观上使用纳米压痕。这些分析是在两种通常用于生物学应用的不同聚合物凝胶中进行的,分别是聚二甲基硅氧烷(PDMS)和琼脂糖。每个组件的制造都涵盖了从生理值到超生理值的一系列模量。所有这五种技术在每个材料组中都确定了相同的总体趋势,
压缩测试
使用4毫米活检穿孔器从制备的凝胶上冲出圆柱状试样,以近似于ASTM标准D575-91规定的样品几何形状(直径4毫米,厚度2毫米)的比率。根据配备的70-N或1.5-N称重传感器,在配备了70-N或1.5-N称重传感器的Mach-1机械测试仪(Biomomentum Inc.,Laval,QC,加拿大)上对样品进行表征。将每个试样以0.03 mm / s的恒定速率压缩至大约0.50应变(压缩距离为1.125 mm)。根据测得的力和位移数据(分别归一化为初始样品的横截面面积和长度)构建应力-应变曲线。弹性模量是根据该曲线的线性区域估算的,对于PDMS,线性应变介于0.05-0.25应变之间,而对于琼脂糖则介于0-0.10应变之间。
压痕测试
使用带有球形端探针(直径为6.35 mm)的Mach-1机械测试仪(Biomomentum Inc.,Laval,QC,加拿大)对90 mm培养皿中的样品进行压痕表征。根据样品的刚性,所有样品均使用1.5 N或70 N的称重传感器。为了进行表征,先将探针高度校准至不含凝胶的培养皿中,以标准化探针的高度。凝胶测试从系统的“查找接触”模式开始,其中探针以0.03 mm / s的速度下降,直到检测到负载为止。基于确定的初始样品高度,将测试设置为总探针位移为30%应变,所有样品的恒定速率为0.03 mm / s。压痕数据的弹性模量是使用Hertzian模型估算的,这说明了球体与弹性固体之间的接触力学[12,13]。为了利用赫兹模型,将测得的压头力与压痕深度,
,其中,F是检测到的力,R是压头的半径,d是位移,而?是 是样本的泊松比。制作了三个独立的凝胶,用于每个样品条件的测试,每个凝胶有六个压痕(n = 18)。
Multi-modal characterization of polymeric gels to determine the influence of testing method on observed elastic modulus
David M. Kingsley, Caitlin H.McCleery, Christopher D.L.Johnson, Michael T.K.Bramson, Deniz Rende, Ryan J.Gilbert, David T.Corr
Journal of the Mechanical Behavior of Biomedical Materials, available online 10 January 2019,
Demand for materials that mechanically replicate native tissue has driven development and characterization of various new biomaterials. However, a consequence of materials and characterization technique diversity is a lack of consensus within the field, with no clear way to compare values measured via different modalities. This likely contributes to the difficulty in replicating findings across the research community; recent evidence suggests that different modalities do not yield the same mechanical measurements within a material, and direct comparisons cannot be made across different testing platforms. Herein, we examine whether “material properties” are characterization modality-specific by analyzing the elastic moduli determined by five typical biomaterial mechanical characterization techniques: unconfined-compression, tensiometry, rheometry, and micro-indentation at the macroscopic level, and microscopically using nanoindentation. These analyses were performed in two different polymeric gels frequently used for biological applications, polydimethylsiloxane (PDMS) and agarose. Each was fabricated to span a range of moduli, from physiologic to supraphysiologic values. All five techniques identified the same overall trend within each material group, supporting their ability to appreciate relative moduli differences. However, significant differences were found across modalities, illustrating a difference in absolute moduli values, and thereby precluding direct comparison of measurements from different characterization modalities. These observed differences may depend on material compliance, viscoelasticity, and microstructure. While determining the underlying mechanism(s) of these differences was beyond the scope of this work, these results demonstrate how each modality affects the measured moduli of the same material, and the sensitivity of each modality to changes in sample material composition.
Compression testing
Cylindrical test specimens were punched from the prepared gels, using a 4-mm biopsy punch, to approximate the ratio of sample geometries (4-mm diameter, 2-mm thickness) specified by ASTM standard D575-91. Samples were characterized on a Mach-1 mechanical tester (Biomomentum Inc., Laval, QC, Canada) equipped with either a 70-N or 1.5-N load cell, depending on sample rigidity. Each test specimen was compressed to approximately 0.50 strain (absolute compression distance of 1.125 mm) at a constant rate of 0.03 mm/s.
Indentation testing
biomomentum多轴机械测试仪Mach-1
Mach-1多轴机械测试仪是模块化集成压缩,拉伸,剪切,摩擦,扭转和3D压痕映射、电位分布等测试设备
biomomentum至1999年以来,专注用于测试生物材料,组织和关节软骨机-电特性产品的设计、开发、制造和商业化的创新解决方案20余年。
其mach-1多轴向多功能组织材料机械特性测试分析系统已经成为组织材料机械-电位测试分析的黄金标准。
1、多功能、多轴向,适用样品范围广:
•1.1、从骨等硬组织材料到脑组织、眼角膜等极软的组织材料
•1.2、从粗的椎间盘的样品到极细的单纤维丝
2、力学类型测试分析功能齐全:
2.1、模块化集成压缩、张力、剪切、摩擦、扭转、穿刺、摩擦和非平面压痕、3D厚度、3D表面轮廓等各种力学类型支持,微观结构表征及动态力学分析研究
2.2、多物理场耦合加载测试
•3、通高量压痕、压缩测试分析(48孔板中压痕测试分析)
•4、高精度、高分辨率:
•4.1、位移分辨率达0.1um
•4.2、力分辨率达0.025mN
•4.3、样品直径小25um
•5、行程范围广:50-250mm
•6、体积小巧、可放入培养箱内
•7 、DIC (Digital Image Correlation)数字图像相关法非接触式的高精度位移、应变测量
•9、活性组织电位分布测试分析
•10、产品成熟,文献量达上千篇
biomomentum多轴机械测试仪Mach-1材料力学性能简介:
biomomentum多轴机械测试仪Mach-1材料力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。
可以放进标准培养箱里进行培养;
biomomentum多轴机械测试仪Mach-1测试意义及适用范围:
材料力学性能可以应用到生产的任何阶段,从测试原材料质量直到检查制成品的耐用性。 测试可对广泛多样的生物样品、材料和产品进行,包括软组织、软骨组织、皮肤组织、凝胶组织、高分子材料、生物产品、医学鉴定和水凝胶等。力学性能测试可帮助企业向客户证明其产品的力学性能、稳定性和安性,从而获得基础数据和竞争势。
1、多功能、多轴向,适用样品范围广:
1.1、从骨等硬组织材料到脑组织、眼角膜等极软的组织材料
1.2、从粗的椎间盘的样品到极细的单纤维丝
2、力学类型测试分析功能齐全:
2.1、模块化集成压缩、张力、剪切、摩擦、扭转、穿刺、摩擦和非平面压痕、3D厚度、3D表面轮廓等各种力学类型支持,微观结构表征及动态力学分析研究
2.2、多物理场耦合加载测试