上海维特锐实业发展有限公司 >> 进入商铺
2016/8/16 18:45:39 摘要:西门子雷达物位计具有许多优点,近年来应用广泛。本文简单介绍了雷达物位计的工作原理及应用的注意事项。
1.概述
西门子雷达物位计进入市场,由于测量精度高、耐高温高压的能力强,以及采用非接触的测量方式,成为过程控制工业罐区物位监测的仪表,受到广大技术人员的欢迎。
在公司的生产车间,物位作为重要的过程参数已成为判断生产过程的效率、工作状况及经济性能的重要指标,物位测量仪表在连续与离散控制系统中的作用日趋突出,业主对测量仪表的测量、稳定可靠、多功能、智能化的要求也越来越高。雷达物位计是近年逐步在现场应用的先进测量技术。在使用过程中也暴露出一些问题,主要是设计选型失误。由于雷达物位计种类和品牌较多,如果在设计阶段不能结合工矿条件选择适宜的产品,就可能造成雷达物位计无法正常使用。
2.雷达物位计的测量原理与分类
2.1 测量原理
西门子雷达物位计主要由雷达探测器(一次表)和雷达显示仪(二次表)组成。雷达探测器主要由主体、连接法兰和天线三部分组成。天线分为喇叭型和直接与波导管连接两种形式。雷达显示仪提供连接上位计算机的RS-485接口,可以传递物位等参数及报警信,亦可通过上位计算机对智能雷达显示仪进行控制。
雷达探测器采用的是线性调频连续波测距原理:天线发射的微波是频率波线性调制的连续波,当回波被天线接收到时,天线发射频率已经改变。根据回波与发射波的频率差可以计算出物料面的距离。FMCW方式测量线路较复杂,从而测量度较高,同时干扰回波也较易去除,一般用于较的测量方案。雷达探测器的主体中包括微波信源、信处理部分。工作过程中,微波信源输出一个波幅恒定的线性调频的微波信,其产生的频率输出:发射频率随时间线性增加,增加的斜率为k,当发射出去的连续波遇到液面发射时,发射回来的信频率如图1中点划线所示,它比发射信滞后了一定时间τ。
根据微波传播原理知道:
τ=2R/C (1)
式中C是微波在空间中的传播速度3×108km/s,R是液面距雷达物位仪的距离。
由于回波信频率的滞后,使得反射频率与发射信频率之间的差频为:
f=kτ (2)
将以上两式合并后可以得到:
R=C×f/2k
显然R与f是成正比的,反射液面离物位仪的距离越远所产生的差频频率f越大,因此可计算天线到反射面的距离。
信处理部分则对回波信与发射信的混合信进行处理,通过测量混合信频谱,用快速傅立叶变换(FFT)来计算混合信,从中对混合信频谱进行分析,排除掉干扰信,然后确定天线到反射界面的距离,从而完成测量。
2.2 优点特性
雷达物位计采用非接触式测量方法。目前较成熟的非接触测量技术有超声波、核辐射和微波。而在化工、石化等过程工业领域,由于被测介质普遍存在高温、高压、腐蚀、挥发、冷凝等复杂工况,且对测量仪表有防爆要求。相比与超声波,微波传播的自身特点决定了雷达物位计的使用优势:
1) 定向传播。
2) 准光学特性。
3) 传输特性好。
4) 介质对微波吸收与介质的介电常数成比例。
由其自身特性决定,雷达物位计在使用上具有以下优势:
1) 连续准确测量:由于雷达物位计不与被测介质接触,且受温度、压力、气体等影响非常小。
2) 维护方便,操作简单:雷达物位计具有故障报警及自诊断功能。
3) 适用范围广:非接触式测量,方向性好,传输损耗小,可测介质多。
4) 安装简单:在各行业应用中,雷达物位计可直接安装到储罐顶部,安装十分简单。
雷达物位计通常分为脉冲雷达和调频连续波雷达(FMCW)两种。脉冲雷达的工作模式与超声物位计相似:天线周期地发射微波脉冲,并接收物料面回波,同时对回波信进行分析处理,确认有效回波,据之计算物位。线性调频连续波测距原理:天线发射的微波是频率波线性调制的连续波,当回波被天线接收到时,天线发射频率已经改变。根据回波与发射波的频率差可以计算出物料面的距离。E+H公司的雷达物位计基本采用脉冲雷达原理。西门子公司LR400系列采用调频连续波雷达原理,LR300系列采用脉冲雷达原理。
美国Madshen品牌雷达液位计
2.3 特性分类
按发射雷达波的频率分,可分为高频雷达和低频雷达。高频雷达发射的20GHz以上的高频微波,根据波的特性:速度=波长*频率,我们可以得知24GHz高频的微波的波长较其他频段的雷达波的波长要短的多。一般的讲,固体料面的形状是倾斜而且粗糙的,较小的波长可以zui大程度上保证发射出去的雷达波能够在粗糙的固体表面zui大程度地被反射回雷达探头。因而高频雷达主要应用于固体介质和大量程场合的测量。低频雷达发射微波频率在100MHZ~6MHZ,主要应用于液体介质和小量程场合的测量。
按天线的形式分,可分为普通雷达和导波雷达。普通雷达发射的微波通过空间传播。导波雷达则是通过波导体传导来发射和接收电磁波的物位测量仪表。
导波雷达测量原理的基础是电磁波的时域反射性,该原理用于物位测量时,微波发生器每秒中产生20万个能量脉冲并发送入波导体,波导体与液体表面的接触时,由于波导体在气体中和液体中的导电性能大不相同,这种波导体导电性的改变使波导体的阻抗发生聚燃变化,从而产生一个物位反射原始脉冲。
3.雷达物位计使用的注意事项
3.1 介电常数的影响
低介电常数和变介电常数的被测介质,优选导波雷达。低介电常数液体介质反射信弱,信衰减严重,物位波动和泡沫散射引起信减弱,罐内障碍物反射引起虚假信,为此就需要发射较强的电磁波信,并采用功能强的微处理器进行复杂的信处理。这就使得常规交流供电雷达物位计价格非常昂贵,但仍难以较好的解决在上述条件下的物位测量问题。导波雷达和常规雷达一样,采用传输时间来测量介质物位,信自烃类[介电常数2~3]液体表面或自水[介电常数80]面反射回传的时间一样的,不同的只是信幅度[强度]的差别。普通雷达须考虑介质的影响,比较难辩识返回的各种信,从杂散信中检出真正的物位信,而导波雷达仅需测量电磁波的传输时间即可,无需信的处理和辨别。
3.2 固体物料测量
对于粉状物料,可以选择缆式导波雷达。由于微波在钢缆中传输,物料在输送过程中产生的粉尘对测量没有影响。闪速炉的精矿、石英、粉煤均采用E+H公司的FMP40系列的缆式导波雷达,测量效果良好。对于颗粒状或块状物料,须选用高频雷达物位计。而且微波的发射角愈小愈好。因为微波的频率越高,微波的波长越短,保证发射出去的雷达波能够在粗糙的固体表面zui大程度地被反射回雷达探头,发射角愈小,形成杂波和漫发射的概率就越小。
3.3 液体、物位的测量
对于液面相对平稳的罐体,且被测液体的介电常数较高,可以选择普通雷达物位计。对于液面波动大、或带有搅拌的罐体,或被测液体的介电常数较低,应优选导波雷达。因为导波管对液面有整型作用,且导波雷达的微波反射不易受环境条件变化的影响。被测液体的介电常数和密度变化对测量结果没有影响。对于被测液体的粘度≥500cst,且液体粘附性较强的情况,不能选择导波管方式测量,因为粘附和结晶会堵死导波管。从而形成虚假物位。可以选择导波杆方式来测量。当介质在探头上的涂污对测量物位的影响可分为两种:膜状涂污和桥接。膜状涂污是在物位降低时,高粘液体或轻油浆在探头上形成的一种覆盖层。由于这种涂污在探头上涂层均匀,因此对测量基本无影响;但桥接性涂污的形成却能导致明显的测量误差,当块状或条状介质污垢粘结于波导体上或桥接于两个波导体之间时,就会在该点测得虚假物位。
3.4 雷达物位计的基本设定
1) 根据物位计测量储罐的形状,设定储罐特性。
2) 根据检测介质的特性设定介电常数。
3) 在过程条件一项选择所测介质的过程变化情况,如果是杆式的雷达物位计,还应该设定探头底部的接触情况。
4) 接下来按照工艺要求设定物位计的空标和满标值,如果是导波管的还应该设定导波管的直径。
5) 根据设定的空标值做全程抑制。
4.结束语
近年来,中国经济迅速发展,石油、化工、医药、食品等过程工业领域对雷达物位计的需求也将越来越大。相信雷达物位计将会有更好的明天,我们将不断提高现有雷达物位计技术水平和开发新型的物位计,为用户提供更好的服务。Madshen品牌具有美国知识产权雷达物位计的面世,为中国用户提供了更大的选择空间,也为他们优化成本、合理配置资源提供了更大的方便。