上海殷德电气有限公司 >> 进入商铺
2019/12/25 15:00:38一、空调密闭冷却方式
为了提高高压大功率变频器的应用稳定性,解决好高压变频器环境散热问题。目前常用的办法是:密闭式空调冷却。该方法主要是为高压变频器提供一个固定的具有隔热保温效果的房间,根据高压变频器的发热量和房间面积大小计算出空调的制冷量,从而配备一定数量的空调。采用空调冷却时,房间的建筑面积过大会增加空调冷却负荷。同时,由于变频器排出的热风不能被空调全部吸入冷却,因此,造成系统运行效率低,造成节约能源的二次浪费。变频器室内的冷热风循环情况如下图所示。
变频器从柜体的正面和后面吸入空气,经柜顶风机将变频器内部的热量带走排到室内。从而在变频器室上部形成一个温度偏高、压力偏高的气旋涡流区,在变频器的正面部分形成一个偏负压区。在运行中,变频器功率柜正面上部区域实际上是吸入刚排出的热风进行冷却,形成气流短路风不能达到有效的冷却效果。空调通常采用下进上出风结构,从而与变频器在一定程度上形成了“抢风”现象,这就是“混合循环区”。在这个区域变频器吸入的空气不*是空调降温后的冷空气,空调的降温处理也没有把变频器排出的热空气全部降温,从而导致了整个冷却系统的运行效率不高。变频器自身是节能节电设备,而通常采用的空调式冷却则造成能源的二次浪费。这种情况在大功率、超大功率的变频应用系统中更加明显。
二、风道冷却
1、功率柜风道设计见下图:
从功率柜散热系统图可知:功率单元内部散热系统通过安装在单元内的风机强制冷却单元里的散热器,使每一个功率单元满足散热需求,同时,由于功率单元内风机吹走热风,使其进风处的柜体内形成强力负压,柜外冷风大量进入高压变频气内,通过功率单元风道对单元散热器进行冷却。同时,由于柜顶风机大量抽风,使其密闭风室内形成强力负压,加速功率单元内热风进入密闭风室,通过柜顶风机抽出高压变频器柜外。通过建立严密畅通的风道,以及在功率单元内设计强制风冷,大大提高那高压变频器散热系统的散热能力和效率,同时,也可以减少散热器体积和功率柜体积,实现高压变频器的小型化,为用户安装高压变频器节省空间。
三、空-水冷却系统
高压变频器对运行环境温度通常要求在-5~40℃,环境粉尘含量低于950ppm。过高的温度会造成变频器温度过热保护而跳闸,粉尘含量过高导致变频器通风滤网更换清洗维护量过高,增加维护费用。因此,采用何种冷却方式和系统结构至关重要。
为了解决高压变频器的运行环境冷却和控制问题,提高系统安全可靠性、降低运营成本。可以解决单位散热密度高、功率大,有效提高系统安全可靠性、降低运营成本的问题。
空-水冷却系统是一种利用高效、环保、节能的冷却系统,其应用技术在国内处于*地位。在电力、钢铁等行业的高压大功率变频应用中得到广泛的推广应用。该系统由于其采用*机械结构设计,较空调等电力、电子设备而言具有明显的安全、可靠性。
其主要原理是:将变频器的热风通过风道直接通过空冷装置进行热交换,由冷却水直接将变频器散失的热量带走;经过降温的冷风排回至室内。空冷装置内通过冷水温度低于33℃,即可以保证热风经过散热片后,将变频器室内的环境温度控制在40℃以下满足变频器对环境运行的要求。从而,保证了变频器室内良好的运行环境。冷却水与循环风*分离,水管线在变频室外与高压设备明确分离,确保高压设备室不会受到防水、绝缘破坏等安全威胁和事故。
同时,由于房间密闭,变频器利用室内的循环风进行设备冷却,具有粉尘度低,维护量小的特点;减少了环境对变频器功率柜、控制柜运行稳定性的不利影响。空-水冷却系统结构原理图如下:
(来源:网络,版权归原作者)