其他品牌 品牌
经销商厂商性质
上海市所在地
备品备件RUBBER DESIGN 减震器
面议备品备件0155026/00 集电器电缆
面议备品备件0,03X12,7X5000MM H+S
面议备品备件GEMU 600 25M17 88301392
面议备品备件WENGLOR 放大器301251104
面议备品备件GEMU 554 50D 1 9 51 1
面议备品备件BERNSTEIN SRF-2/1/1-E-H
面议备品备件N813.4ANE KNF
面议QY-1044.0013 泵 SPECK备品备件
面议NT 63-K-MS-M3/1120 备品备件
面议VECTOR 备品备件CANAPE
面议VECTOR VN1670 备品备件
面议NOVOTECHNIK 传感器SP2801A502
NOVOTECHNIK 传感器SP2801A502
NOVOTECHNIK位移传感电磁尺TX20025
NOVOTECHNIK位移传感电磁尺TX20025
#诺冠传感器一级代理IP65
型号列举:SP2801A502 SP2821A502 SP2831A502 SP2841A502 SP2801S0002 SP2841S0002
IP6000 工业级电位计 线性度0.075% 重复性优于0.007° IP65
型号列举:IP6501A502
IPE6000工业级电位计 电流输出 输出电流 0-20mA或4-20mA线性度优于0.1%(345°)或0.3%(90°)重复性优于0.007° IP65
型号列举:IPE6501S0055(345°) IPE6501S0056(90°)
IPS6000工业级电位计 线性度优于0.1% 高能量 IP65
型号列举:IPS6501A502
AW AWS 系列编码器 用于角度编码,内置电子线路保证整个360°范围具有连续电压输出。 防护等级 IP65
型号列举:AW360 ZE-10 AW360 ZE-11 AWS360 ZE-10
IGP GP 齿轮传动角位移传感器 无侧隙减速齿轮,可测定3圈,5圈或10圈角位移。坚固耐用。线性度优于0.1% 防护等级IP65
型号列举:IGP10P6501A502 IGP5P6501A502 IGP3P6501A502 GP10P6501A502 GP5P6501A502 GP3P6501A502
极其稳定的低成本分压式传感器 易于安装,适于高温震动环境,被大量用于 F1 赛车
电器测量角度:100°\\u8230X340° 线性精度:±0.6…±0.2% 运行速度:120min-1
运行寿命:50,000,000 次 防护等级:IP40,IP54,IP65 订购型号: SP2801A502 ,<=308° ,6mm轴颈,
IP54 SP2821A502,<=308°,插按式。 SP2831A502,<=308°,6mm轴颈,
IP65 SP2841A502,<=308°,插按式,IP65 SP2801S0002 SP2821S0002 SP2831S0002 SP2841S0002
SP2841S0065 SP2841S0067
NOVOtechnik IP6000高精度电位器式角度传感器
IP6500系列高精度角度传感器,适用于各种恶劣的工况应用,可选电流输出方式。线性优异- 标准型±0.075%, 特殊要求±0.025%
寿命长-运转次数达100X106
重复性高达0.007° 机械连续旋转 保护等级IP65
该传感器特别适用于恶劣的工作环境下各种的工业应用。铸造机壳为防水型,结构坚固。
转动轴加密封油, 接头和插座的保护等级为IP65。此设备的可靠性高,寿命长,线性优异,分辨率高,能高速运转,耐腐蚀,
NOVOtechnik主要系列有:
非接触式直线位移传感器系列如下:
TLM系列 TMI系列 TLM/TMI/TIM磁块、磁环辅件 FTI10系列 F200G系列
接触式直线位移传感器系列如下:
LWH系列 TLH系列 LWG系列 L系列 TEX系列 PTP系列 T/TS系列 TR/TRS系列
位移传感器常用主要型号:LWH 75 LWH 100 LWH 130LWH 150 LWH 175 LWH200 LWH 225 LWH 250 LWH 300 LWH 325 LWH 360 LWH 375 LWH 400LWH 425 LWH450 LWH 500 LWH 550 LWH600 LWH 750 LWH 900
TLH100 TLH130 TLH150TLH100 TLH175 TLH200 TLH225 TLH275 TLH300 TLH325 TLH360 TLH400 TLH425TLH450 TLH500 TLH525 TLH600 TLH650 TLH750 TLH800 TLH900 TLH950 TLH1000 TLH1100TLH1250 TLH1350 TLH1500 TLH1600 TLH1750TLH2000 TLH2250 TLH2500 TLH2750 TLH3000 TLH3500 TLH4000
其它系列位移传感器主要型号有:TLM0800- 001-111- 101 TMI 0450 -004-002-111-102 TIM0500-301-851-201 FTI10.1.50.4.K1 F210G LWG750 L450 TEX0250-411-002-202 PTP0125-311-002-001 T75 TS150 TR25 TRS100
信号转换器有:MUW200-1 MUW250-0 MUP100-1 MUP150-6 MUP400-01 MUP400-11 MUK350-1 MUK350-0 MUK350-4 MUK350-6
信号读数器有:MAP330-1-VC-A1 MAP332-2-PC-A4 MAP340-8-PO-A1 MAP342-2-IC-A4 MAP334-1-PC-A1 MAP344-8-IV-A4 MAP4010-000-001
型号汇总:
TR10 、TR25、 TR50 、TR75 、TR100
TRS25、 TRS50 、TRS75、 TRS100
TR 10 023260
TR 25 023261
TRS 25 023271
TR 50 023262
TRS 50 023272
TR 75 023263
TRS 75 023273
TR 100 023264
TRS 100 023274
EEM 33-70
EEM 33-71
EEM 33-72
T25 023202
TS 25 023232
T50 023203
TS 50 023233
T75 023204
TS 75 023234
T100 023205
TS 100 023235
T150 023206
TS 150 023236
LWG Series
LWG 75 026103
LWG 100 026104
LWG 150 026106
LWG 225 026109
LWG 300 026112
LWG 360 026114
LWG 450 026118
LWG 500 026120
LWG 600 026124
LWG 750 026130
LWH 75 024303
LWH 100 024304
LWH 130 024305
LWH 150 024306
LWH 225 024309
LWH 300 024312
LWH 360 024314
LWH 450 024318
LWH 500 024320
LWH 600 024324
LWH 750 024330
LWH 900 024336
Order designations
Type Art. no.
TLH 100 025304
TLH 130 025305
TLH 150 025306
TLH 225 025309
TLH 300 025312
TLH 360 025314
TLH 450 025318
TLH 500 025320
TLH 600 025324
TLH 750 025330
TLH 900 025336
TLH 1000 025340
TLH 1250 025350
TLH 1500 025360
TLH 1750 025370
TLH 2000 025380
TLH 2250 025381
TLH 2500 025383
TLH 2750 025384
TLH 3000 025385
德国NOVOTECHNIK位移传感电磁尺TX20025 TX20050 TX20075 TX20100 TX20150 TX20200 TX20250 TX20300
TEX0010 TEX0025 TEX0050 TEX0075 TEX0100 TEX0125* TEX0150 TEX0175* TEX0200 TEX0250 TEX0300
Z-TLM-P01 Z-TLM-P04 Z-TLM-P05 Z-TMI-P02 Z-TMI-P14 Z-TMI-P10 Z-TMI-P11
Z-TMI-P02, Art.No. 005652;
Z-TMI-P14, Art.No. 005657
EEM 33-84, EEM 33-85 EEM 33-86
EEM 33-87, IP67,
EEM 33-87, IP67,
Art.No. 005630 ESD EN 61000-4-2
Art.No. 005630
EEM33-86, EEM33-87
EEM 33-88, IP67,
Art.No. 005633;
Z-TMI-P02, Art.No. 005652,
Z-TMI-P14, Art.No. 005657
FTI 10.1.50.4.K1
FTI 10.1.67.4.K1
FTI 10.1.50.0.K1
FTI 10.1.67.0.K1
FTI 10.2.50.4.K1
FTI 10.2.67.4.K1
FTI 10.2.50.0.K1
FTI 10.2.67.0.K1
FTI 10.4.50.4.K1
FTI 10.4.67.4.K1
FTI 10.4.50.0.K1
P4501 A102 006201
P4501 A202 006202
P4501 A502 006203
Type Art. no.
P2501 A102 003201
P2501 A202 003202
P2501 A502 003203
Type Art. no.
P2201 A502 002003
Order Designations
Type Art. no.
SPK2501 A5033 038001
SPK2501 A1812 038002
Cable set ZK1-500 059013
专业销售德国NOVOTECHNIK传感器
SP2836 308 000 101
SP2836 100 002 101
SP2836 130 050 101
SP2836 345 065 101
SP2846 308 000 101
SP2846 100 002 101
SP2846 130 050 101
SP2846 345 065 101
SP2890 s 0002
SP2890 s 0050
SP2890 s 0065
Art. no.
019531
019532
not released
019533
019550
019551
019556
019560
Type Art.no.
SP5001 120 001 001 018500
SP5001 105 002 001 018501
SP5001 120 001 002 018502
Order designations
Type Art. no.
IP6501 A502 010001
Additional models available
IP6501 G252 001004
Order designations
Type Art. no.
IPE6501 S0055 for 345° 001040
IPE6501 S0056 for 90° 001041
Order designations
Type Art. no.
IPS6501 A502 010061
Additional models available
IPS6501 G252 010066
IPS6501 W302 010067
? Lever arm 165 x 20 mm,
Z-IPX-01, Art.No. 056501
? Lever arm 185 x 20 mm,
Z-IPX-11, Art.No. 056502
? Disc ? 70 mm
Z-IPX-21, Art.No. 056503
? Mounting plate
Type Art. no.
AW360 ZE-10 011021
AW360 ZE-11 011022
Order designations
Type Art. no.
AWS360 ZE-10 011061
Order designations
Type Art. no.
ML6 5K0 125 MB 82595
ML10 5K0 125 MB 82442
ML25 10K0 125 MB 82445
ML50 10K0 125 MB 82447
ML100 10K0 125 MB 82449
Order designations
Type Art. no.
PD2310 1K0 5A127 MB 76924
PD2310 5K0 5A127 MB 76927
PD2310 10K0 5A127 MB 76928
PD2310 1K0 5A127 UK 76936
PD2310 5K0 5A127 UK 76939
PD2310 10K0 5A127 UK 76940
PD2310 1K0 5A127 FK 76948
PD2310 5K0 5A127 FK 76951
PD2310 10K0 5A127 FK 76916
IGP10 P6501 A502 009123 Reduction 10:1
IGP5 P6501 A502 009122 Reduction 5:1
IGP3 P6501 A502 009121 Reduction 3:1
Order designations
Type Art. no. Ratio
GP10 P6501 A502 009113 Reduction 10:1
GP5 P6501 A502 009112 Reduction 5:1
GP3 P6501 A502 009111 Reduction 3:1
Type Art. no.
GL60 5K0 M150 82347
GL100 5K0 M150 82026
GL200 5K0 M150 82028
Type Art. no.
GL60 10K0 M354 70011
GL100 10K0 M340 82027
GL200 10K0 M340 82029
GL300 20K0 M340 82031
Order designations
Type Art. no.
WAL300 5K0 1A 82920
WAL305 5K0 1A 82871
Order designations
Type Art .no.
PC90 1K0 3A 047000
PC90 5K0 3A 047004
PC90 10K0 3A 047006
PC90 50K0 3A 047008
PC90 100K0 3A 047010
电子质量中起源于电磁场的部分。它的数值可以从匀速运动电子的电磁场动量或依据,质能关系式从静止电子的静电场能量作出估计。在电子论的发展初期,曾假定电子的电磁质量等于在实验中测定的质量。并由此算出他的半径,这半径称为电子的经典半径。
当物体具有电场或具有磁场时,对此物体进行电屏蔽或磁屏蔽,用天平称量,全部装置(包括屏蔽体),称量出的数据与未有电场或磁场是不相同的。
天平称量得到的数据是质量,由于对物体进行了屏蔽,称量过程对天平是没有干扰。称量结果数据是有效的。由此,对同一物体来说,除了常规质量,还存在电磁质量。
直线电流为例,运动电荷产生的波动,以小磁针N处于直线电流I的右侧,当把小磁针N简化成一个环形电流abcd时,虽然点a、b、c、d都处于直线电流I的波动范围之内,但点a、b、c、d处毗邻运动的能量大小不等。显然,Ea>Ec,Eb=Ed。这样一来,直线电流I的波动对小磁针N的环形电流abcd就有一个顺时针的力矩。该力矩作用于绕核旋转的电子,使其顺时针旋转,其宏观表现为小磁针N的北极垂直纸面向外。
然电流产生的波动可以影响小磁针的偏转,说明该波动具有客观实在性;两个具有客观实在性的波动相遇时肯定会相互影响。
直线电流I2处于直线电流I1的波动范围内,I1、I2同向并在同一个平面内,直线电流I1、I2把空间分成A、B、C三个区域。分析直线电流I1波动时所形成的毗邻运动,知区域A内毗邻运动的能量大于区域C内毗邻运动的能量。当直线电流I2波动传播时,在区域A内受到的阻力就要小于在区域C内受到的阻力。这样电流I2波动时在区域A内的传播速度vA就要大于在区域C的传播速度vC,即vA>vC。根据"光速不变原理",这是不稳定的。因此直线电流I2有靠近直线电流I1的趋势,以使vA=vC=c,表现为同向直线电流相吸。
电荷运动可以产生波动。该波动不但会对小磁针的偏转产生影响,而且波动之间也能互相影响,从而成功地解释了电磁现象。
可以看出,从运动电荷入手,分析运动电荷产生的波动,可以得到所谓的"磁场";分析两个波动的相互影响,可以解释"同向直线电流相吸"等电磁现象。
电子质量中起源于电磁场的部分。它的数值可以从匀速运动电子的电磁场动量或依据,质能关系式从静止电子的静电场能量作出估计。在电子论的发展初期,曾假定电子的电磁质量等于在实验中测定的质量。并由此算出他的半径,这半径称为电子的经典半径。
当物体具有电场或具有磁场时,对此物体进行电屏蔽或磁屏蔽,用天平称量,全部装置(包括屏蔽体),称量出的数据与未有电场或磁场是不相同的。
天平称量得到的数据是质量,由于对物体进行了屏蔽,称量过程对天平是没有干扰。称量结果数据是有效的。由此,对同一物体来说,除了常规质量,还存在电磁质量。
直线电流为例,运动电荷产生的波动,以小磁针N处于直线电流I的右侧,当把小磁针N简化成一个环形电流abcd时,虽然点a、b、c、d都处于直线电流I的波动范围之内,但点a、b、c、d处毗邻运动的能量大小不等。显然,Ea>Ec,Eb=Ed。这样一来,直线电流I的波动对小磁针N的环形电流abcd就有一个顺时针的力矩。该力矩作用于绕核旋转的电子,使其顺时针旋转,其宏观表现为小磁针N的北极垂直纸面向外。
然电流产生的波动可以影响小磁针的偏转,说明该波动具有客观实在性;两个具有客观实在性的波动相遇时肯定会相互影响。
直线电流I2处于直线电流I1的波动范围内,I1、I2同向并在同一个平面内,直线电流I1、I2把空间分成A、B、C三个区域。分析直线电流I1波动时所形成的毗邻运动,知区域A内毗邻运动的能量大于区域C内毗邻运动的能量。当直线电流I2波动传播时,在区域A内受到的阻力就要小于在区域C内受到的阻力。这样电流I2波动时在区域A内的传播速度vA就要大于在区域C的传播速度vC,即vA>vC。根据"光速不变原理",这是不稳定的。因此直线电流I2有靠近直线电流I1的趋势,以使vA=vC=c,表现为同向直线电流相吸。
电荷运动可以产生波动。该波动不但会对小磁针的偏转产生影响,而且波动之间也能互相影响,从而成功地解释了电磁现象。
可以看出,从运动电荷入手,分析运动电荷产生的波动,可以得到所谓的"磁场";分析两个波动的相互影响,可以解释"同向直线电流相吸"等电磁现象。
电子质量中起源于电磁场的部分。它的数值可以从匀速运动电子的电磁场动量或依据,质能关系式从静止电子的静电场能量作出估计。在电子论的发展初期,曾假定电子的电磁质量等于在实验中测定的质量。并由此算出他的半径,这半径称为电子的经典半径。
当物体具有电场或具有磁场时,对此物体进行电屏蔽或磁屏蔽,用天平称量,全部装置(包括屏蔽体),称量出的数据与未有电场或磁场是不相同的。
天平称量得到的数据是质量,由于对物体进行了屏蔽,称量过程对天平是没有干扰。称量结果数据是有效的。由此,对同一物体来说,除了常规质量,还存在电磁质量。
直线电流为例,运动电荷产生的波动,以小磁针N处于直线电流I的右侧,当把小磁针N简化成一个环形电流abcd时,虽然点a、b、c、d都处于直线电流I的波动范围之内,但点a、b、c、d处毗邻运动的能量大小不等。显然,Ea>Ec,Eb=Ed。这样一来,直线电流I的波动对小磁针N的环形电流abcd就有一个顺时针的力矩。该力矩作用于绕核旋转的电子,使其顺时针旋转,其宏观表现为小磁针N的北极垂直纸面向外。
然电流产生的波动可以影响小磁针的偏转,说明该波动具有客观实在性;两个具有客观实在性的波动相遇时肯定会相互影响。
直线电流I2处于直线电流I1的波动范围内,I1、I2同向并在同一个平面内,直线电流I1、I2把空间分成A、B、C三个区域。分析直线电流I1波动时所形成的毗邻运动,知区域A内毗邻运动的能量大于区域C内毗邻运动的能量。当直线电流I2波动传播时,在区域A内受到的阻力就要小于在区域C内受到的阻力。这样电流I2波动时在区域A内的传播速度vA就要大于在区域C的传播速度vC,即vA>vC。根据"光速不变原理",这是不稳定的。因此直线电流I2有靠近直线电流I1的趋势,以使vA=vC=c,表现为同向直线电流相吸。
电荷运动可以产生波动。该波动不但会对小磁针的偏转产生影响,而且波动之间也能互相影响,从而成功地解释了电磁现象。
可以看出,从运动电荷入手,分析运动电荷产生的波动,可以得到所谓的"磁场";分析两个波动的相互影响,可以解释"同向直线电流相吸"等电磁现象。
电子质量中起源于电磁场的部分。它的数值可以从匀速运动电子的电磁场动量或依据,质能关系式从静止电子的静电场能量作出估计。在电子论的发展初期,曾假定电子的电磁质量等于在实验中测定的质量。并由此算出他的半径,这半径称为电子的经典半径。
当物体具有电场或具有磁场时,对此物体进行电屏蔽或磁屏蔽,用天平称量,全部装置(包括屏蔽体),称量出的数据与未有电场或磁场是不相同的。
天平称量得到的数据是质量,由于对物体进行了屏蔽,称量过程对天平是没有干扰。称量结果数据是有效的。由此,对同一物体来说,除了常规质量,还存在电磁质量。
直线电流为例,运动电荷产生的波动,以小磁针N处于直线电流I的右侧,当把小磁针N简化成一个环形电流abcd时,虽然点a、b、c、d都处于直线电流I的波动范围之内,但点a、b、c、d处毗邻运动的能量大小不等。显然,Ea>Ec,Eb=Ed。这样一来,直线电流I的波动对小磁针N的环形电流abcd就有一个顺时针的力矩。该力矩作用于绕核旋转的电子,使其顺时针旋转,其宏观表现为小磁针N的北极垂直纸面向外。
然电流产生的波动可以影响小磁针的偏转,说明该波动具有客观实在性;两个具有客观实在性的波动相遇时肯定会相互影响。
直线电流I2处于直线电流I1的波动范围内,I1、I2同向并在同一个平面内,直线电流I1、I2把空间分成A、B、C三个区域。分析直线电流I1波动时所形成的毗邻运动,知区域A内毗邻运动的能量大于区域C内毗邻运动的能量。当直线电流I2波动传播时,在区域A内受到的阻力就要小于在区域C内受到的阻力。这样电流I2波动时在区域A内的传播速度vA就要大于在区域C的传播速度vC,即vA>vC。根据"光速不变原理",这是不稳定的。因此直线电流I2有靠近直线电流I1的趋势,以使vA=vC=c,表现为同向直线电流相吸。
电荷运动可以产生波动。该波动不但会对小磁针的偏转产生影响,而且波动之间也能互相影响,从而成功地解释了电磁现象。
可以看出,从运动电荷入手,分析运动电荷产生的波动,可以得到所谓的"磁场";分析两个波动的相互影响,可以解释"同向直线电流相吸"等电磁现象。
电子质量中起源于电磁场的部分。它的数值可以从匀速运动电子的电磁场动量或依据,质能关系式从静止电子的静电场能量作出估计。在电子论的发展初期,曾假定电子的电磁质量等于在实验中测定的质量。并由此算出他的半径,这半径称为电子的经典半径。
当物体具有电场或具有磁场时,对此物体进行电屏蔽或磁屏蔽,用天平称量,全部装置(包括屏蔽体),称量出的数据与未有电场或磁场是不相同的。
天平称量得到的数据是质量,由于对物体进行了屏蔽,称量过程对天平是没有干扰。称量结果数据是有效的。由此,对同一物体来说,除了常规质量,还存在电磁质量。
直线电流为例,运动电荷产生的波动,以小磁针N处于直线电流I的右侧,当把小磁针N简化成一个环形电流abcd时,虽然点a、b、c、d都处于直线电流I的波动范围之内,但点a、b、c、d处毗邻运动的能量大小不等。显然,Ea>Ec,Eb=Ed。这样一来,直线电流I的波动对小磁针N的环形电流abcd就有一个顺时针的力矩。该力矩作用于绕核旋转的电子,使其顺时针旋转,其宏观表现为小磁针N的北极垂直纸面向外。
然电流产生的波动可以影响小磁针的偏转,说明该波动具有客观实在性;两个具有客观实在性的波动相遇时肯定会相互影响。
直线电流I2处于直线电流I1的波动范围内,I1、I2同向并在同一个平面内,直线电流I1、I2把空间分成A、B、C三个区域。分析直线电流I1波动时所形成的毗邻运动,知区域A内毗邻运动的能量大于区域C内毗邻运动的能量。当直线电流I2波动传播时,在区域A内受到的阻力就要小于在区域C内受到的阻力。这样电流I2波动时在区域A内的传播速度vA就要大于在区域C的传播速度vC,即vA>vC。根据"光速不变原理",这是不稳定的。因此直线电流I2有靠近直线电流I1的趋势,以使vA=vC=c,表现为同向直线电流相吸。
电荷运动可以产生波动。该波动不但会对小磁针的偏转产生影响,而且波动之间也能互相影响,从而成功地解释了电磁现象。
可以看出,从运动电荷入手,分析运动电荷产生的波动,可以得到所谓的"磁场";分析两个波动的相互影响,可以解释"同向直线电流相吸"等电磁现象。
电子质量中起源于电磁场的部分。它的数值可以从匀速运动电子的电磁场动量或依据,质能关系式从静止电子的静电场能量作出估计。在电子论的发展初期,曾假定电子的电磁质量等于在实验中测定的质量。并由此算出他的半径,这半径称为电子的经典半径。
当物体具有电场或具有磁场时,对此物体进行电屏蔽或磁屏蔽,用天平称量,全部装置(包括屏蔽体),称量出的数据与未有电场或磁场是不相同的。
天平称量得到的数据是质量,由于对物体进行了屏蔽,称量过程对天平是没有干扰。称量结果数据是有效的。由此,对同一物体来说,除了常规质量,还存在电磁质量。
直线电流为例,运动电荷产生的波动,以小磁针N处于直线电流I的右侧,当把小磁针N简化成一个环形电流abcd时,虽然点a、b、c、d都处于直线电流I的波动范围之内,但点a、b、c、d处毗邻运动的能量大小不等。显然,Ea>Ec,Eb=Ed。这样一来,直线电流I的波动对小磁针N的环形电流abcd就有一个顺时针的力矩。该力矩作用于绕核旋转的电子,使其顺时针旋转,其宏观表现为小磁针N的北极垂直纸面向外。
然电流产生的波动可以影响小磁针的偏转,说明该波动具有客观实在性;两个具有客观实在性的波动相遇时肯定会相互影响。
直线电流I2处于直线电流I1的波动范围内,I1、I2同向并在同一个平面内,直线电流I1、I2把空间分成A、B、C三个区域。分析直线电流I1波动时所形成的毗邻运动,知区域A内毗邻运动的能量大于区域C内毗邻运动的能量。当直线电流I2波动传播时,在区域A内受到的阻力就要小于在区域C内受到的阻力。这样电流I2波动时在区域A内的传播速度vA就要大于在区域C的传播速度vC,即vA>vC。根据"光速不变原理",这是不稳定的。因此直线电流I2有靠近直线电流I1的趋势,以使vA=vC=c,表现为同向直线电流相吸。
电荷运动可以产生波动。该波动不但会对小磁针的偏转产生影响,而且波动之间也能互相影响,从而成功地解释了电磁现象。
可以看出,从运动电荷入手,分析运动电荷产生的波动,可以得到所谓的"磁场";分析两个波动的相互影响,可以解释"同向直线电流相吸"等电磁现象。
电子质量中起源于电磁场的部分。它的数值可以从匀速运动电子的电磁场动量或依据,质能关系式从静止电子的静电场能量作出估计。在电子论的发展初期,曾假定电子的电磁质量等于在实验中测定的质量。并由此算出他的半径,这半径称为电子的经典半径。
当物体具有电场或具有磁场时,对此物体进行电屏蔽或磁屏蔽,用天平称量,全部装置(包括屏蔽体),称量出的数据与未有电场或磁场是不相同的。
天平称量得到的数据是质量,由于对物体进行了屏蔽,称量过程对天平是没有干扰。称量结果数据是有效的。由此,对同一物体来说,除了常规质量,还存在电磁质量。
直线电流为例,运动电荷产生的波动,以小磁针N处于直线电流I的右侧,当把小磁针N简化成一个环形电流abcd时,虽然点a、b、c、d都处于直线电流I的波动范围之内,但点a、b、c、d处毗邻运动的能量大小不等。显然,Ea>Ec,Eb=Ed。这样一来,直线电流I的波动对小磁针N的环形电流abcd就有一个顺时针的力矩。该力矩作用于绕核旋转的电子,使其顺时针旋转,其宏观表现为小磁针N的北极垂直纸面向外。
然电流产生的波动可以影响小磁针的偏转,说明该波动具有客观实在性;两个具有客观实在性的波动相遇时肯定会相互影响。
直线电流I2处于直线电流I1的波动范围内,I1、I2同向并在同一个平面内,直线电流I1、I2把空间分成A、B、C三个区域。分析直线电流I1波动时所形成的毗邻运动,知区域A内毗邻运动的能量大于区域C内毗邻运动的能量。当直线电流I2波动传播时,在区域A内受到的阻力就要小于在区域C内受到的阻力。这样电流I2波动时在区域A内的传播速度vA就要大于在区域C的传播速度vC,即vA>vC。根据"光速不变原理",这是不稳定的。因此直线电流I2有靠近直线电流I1的趋势,以使vA=vC=c,表现为同向直线电流相吸。
电荷运动可以产生波动。该波动不但会对小磁针的偏转产生影响,而且波动之间也能互相影响,从而成功地解释了电磁现象。
可以看出,从运动电荷入手,分析运动电荷产生的波动,可以得到所谓的"磁场";分析两个波动的相互影响,可以解释"同向直线电流相吸"等电磁现象。