其他品牌 品牌
经销商厂商性质
上海市所在地
备品备件RUBBER DESIGN 减震器
面议备品备件0155026/00 集电器电缆
面议备品备件0,03X12,7X5000MM H+S
面议备品备件GEMU 600 25M17 88301392
面议备品备件WENGLOR 放大器301251104
面议备品备件GEMU 554 50D 1 9 51 1
面议备品备件BERNSTEIN SRF-2/1/1-E-H
面议备品备件N813.4ANE KNF
面议QY-1044.0013 泵 SPECK备品备件
面议NT 63-K-MS-M3/1120 备品备件
面议VECTOR 备品备件CANAPE
面议VECTOR VN1670 备品备件
面议GJC 流量开关 Instruments Ltd 5025000
GJC 流量开关 Instruments Ltd 5025000
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
简谐振动的特点是:1,有一个平衡位置(机械能耗尽之后,振子应该静止的位置)。2,有一个大小和方向都作周期性变化的回复力的作用。3,频率单一、振幅不变。
振子就是对振动物体的抽象:忽略物体的形状和大小,用质点代替物体进行研究。这个代替振动物体的质点,就叫做振子。
振子在某一时刻所处的位置,用位移x表示。位移x就是以平衡位置为参照物(基点――基准点),得到的"振子在某一时刻所处的位置"的距离和方向。
我们对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。我们对匀速圆周运动和简谐振动研究时,基准点选择在圆心或平衡位置(不动的点)。
参照物本来就应该是在研究过程中保持静止(或假定为静止)的点,我们的物理思路,就是"从确定的量、不变的量出发进行研究"。
确定的量和不变的量有本质的区别,在对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。这是确定的量,却不一定是不变的量。特别在我们进行分段研究时,每一阶段的终点,就是下一阶段的始点。我们选择运动的始点为基准点,可以简化研究过程,这是服从于物理研究的"化繁为简"的原则,因此,不惜在不同的研究阶段,选择不同的基准点。
在研究匀速圆周运动和简谐振动时,由于宏观上的周期性和微观上的拓朴性,问题很复杂,所以不能选运动的始点,作基准点进行研究,而要选择确定而且不变的圆心或者平衡位置,作基准点进行研究,也是服从于物理研究的"化繁为简"的原则。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
简谐振动的特点是:1,有一个平衡位置(机械能耗尽之后,振子应该静止的位置)。2,有一个大小和方向都作周期性变化的回复力的作用。3,频率单一、振幅不变。
振子就是对振动物体的抽象:忽略物体的形状和大小,用质点代替物体进行研究。这个代替振动物体的质点,就叫做振子。
振子在某一时刻所处的位置,用位移x表示。位移x就是以平衡位置为参照物(基点――基准点),得到的"振子在某一时刻所处的位置"的距离和方向。
我们对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。我们对匀速圆周运动和简谐振动研究时,基准点选择在圆心或平衡位置(不动的点)。
参照物本来就应该是在研究过程中保持静止(或假定为静止)的点,我们的物理思路,就是"从确定的量、不变的量出发进行研究"。
确定的量和不变的量有本质的区别,在对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。这是确定的量,却不一定是不变的量。特别在我们进行分段研究时,每一阶段的终点,就是下一阶段的始点。我们选择运动的始点为基准点,可以简化研究过程,这是服从于物理研究的"化繁为简"的原则,因此,不惜在不同的研究阶段,选择不同的基准点。
在研究匀速圆周运动和简谐振动时,由于宏观上的周期性和微观上的拓朴性,问题很复杂,所以不能选运动的始点,作基准点进行研究,而要选择确定而且不变的圆心或者平衡位置,作基准点进行研究,也是服从于物理研究的"化繁为简"的原则。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
简谐振动的特点是:1,有一个平衡位置(机械能耗尽之后,振子应该静止的位置)。2,有一个大小和方向都作周期性变化的回复力的作用。3,频率单一、振幅不变。
振子就是对振动物体的抽象:忽略物体的形状和大小,用质点代替物体进行研究。这个代替振动物体的质点,就叫做振子。
振子在某一时刻所处的位置,用位移x表示。位移x就是以平衡位置为参照物(基点――基准点),得到的"振子在某一时刻所处的位置"的距离和方向。
我们对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。我们对匀速圆周运动和简谐振动研究时,基准点选择在圆心或平衡位置(不动的点)。
参照物本来就应该是在研究过程中保持静止(或假定为静止)的点,我们的物理思路,就是"从确定的量、不变的量出发进行研究"。
确定的量和不变的量有本质的区别,在对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。这是确定的量,却不一定是不变的量。特别在我们进行分段研究时,每一阶段的终点,就是下一阶段的始点。我们选择运动的始点为基准点,可以简化研究过程,这是服从于物理研究的"化繁为简"的原则,因此,不惜在不同的研究阶段,选择不同的基准点。
在研究匀速圆周运动和简谐振动时,由于宏观上的周期性和微观上的拓朴性,问题很复杂,所以不能选运动的始点,作基准点进行研究,而要选择确定而且不变的圆心或者平衡位置,作基准点进行研究,也是服从于物理研究的"化繁为简"的原则。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
简谐振动的特点是:1,有一个平衡位置(机械能耗尽之后,振子应该静止的位置)。2,有一个大小和方向都作周期性变化的回复力的作用。3,频率单一、振幅不变。
振子就是对振动物体的抽象:忽略物体的形状和大小,用质点代替物体进行研究。这个代替振动物体的质点,就叫做振子。
振子在某一时刻所处的位置,用位移x表示。位移x就是以平衡位置为参照物(基点――基准点),得到的"振子在某一时刻所处的位置"的距离和方向。
我们对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。我们对匀速圆周运动和简谐振动研究时,基准点选择在圆心或平衡位置(不动的点)。
参照物本来就应该是在研究过程中保持静止(或假定为静止)的点,我们的物理思路,就是"从确定的量、不变的量出发进行研究"。
确定的量和不变的量有本质的区别,在对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。这是确定的量,却不一定是不变的量。特别在我们进行分段研究时,每一阶段的终点,就是下一阶段的始点。我们选择运动的始点为基准点,可以简化研究过程,这是服从于物理研究的"化繁为简"的原则,因此,不惜在不同的研究阶段,选择不同的基准点。
在研究匀速圆周运动和简谐振动时,由于宏观上的周期性和微观上的拓朴性,问题很复杂,所以不能选运动的始点,作基准点进行研究,而要选择确定而且不变的圆心或者平衡位置,作基准点进行研究,也是服从于物理研究的"化繁为简"的原则。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
简谐振动的特点是:1,有一个平衡位置(机械能耗尽之后,振子应该静止的位置)。2,有一个大小和方向都作周期性变化的回复力的作用。3,频率单一、振幅不变。
振子就是对振动物体的抽象:忽略物体的形状和大小,用质点代替物体进行研究。这个代替振动物体的质点,就叫做振子。
振子在某一时刻所处的位置,用位移x表示。位移x就是以平衡位置为参照物(基点――基准点),得到的"振子在某一时刻所处的位置"的距离和方向。
我们对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。我们对匀速圆周运动和简谐振动研究时,基准点选择在圆心或平衡位置(不动的点)。
参照物本来就应该是在研究过程中保持静止(或假定为静止)的点,我们的物理思路,就是"从确定的量、不变的量出发进行研究"。
确定的量和不变的量有本质的区别,在对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。这是确定的量,却不一定是不变的量。特别在我们进行分段研究时,每一阶段的终点,就是下一阶段的始点。我们选择运动的始点为基准点,可以简化研究过程,这是服从于物理研究的"化繁为简"的原则,因此,不惜在不同的研究阶段,选择不同的基准点。
在研究匀速圆周运动和简谐振动时,由于宏观上的周期性和微观上的拓朴性,问题很复杂,所以不能选运动的始点,作基准点进行研究,而要选择确定而且不变的圆心或者平衡位置,作基准点进行研究,也是服从于物理研究的"化繁为简"的原则。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
简谐振动的特点是:1,有一个平衡位置(机械能耗尽之后,振子应该静止的位置)。2,有一个大小和方向都作周期性变化的回复力的作用。3,频率单一、振幅不变。
振子就是对振动物体的抽象:忽略物体的形状和大小,用质点代替物体进行研究。这个代替振动物体的质点,就叫做振子。
振子在某一时刻所处的位置,用位移x表示。位移x就是以平衡位置为参照物(基点――基准点),得到的"振子在某一时刻所处的位置"的距离和方向。
我们对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。我们对匀速圆周运动和简谐振动研究时,基准点选择在圆心或平衡位置(不动的点)。
参照物本来就应该是在研究过程中保持静止(或假定为静止)的点,我们的物理思路,就是"从确定的量、不变的量出发进行研究"。
确定的量和不变的量有本质的区别,在对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。这是确定的量,却不一定是不变的量。特别在我们进行分段研究时,每一阶段的终点,就是下一阶段的始点。我们选择运动的始点为基准点,可以简化研究过程,这是服从于物理研究的"化繁为简"的原则,因此,不惜在不同的研究阶段,选择不同的基准点。
在研究匀速圆周运动和简谐振动时,由于宏观上的周期性和微观上的拓朴性,问题很复杂,所以不能选运动的始点,作基准点进行研究,而要选择确定而且不变的圆心或者平衡位置,作基准点进行研究,也是服从于物理研究的"化繁为简"的原则。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
简谐振动的特点是:1,有一个平衡位置(机械能耗尽之后,振子应该静止的位置)。2,有一个大小和方向都作周期性变化的回复力的作用。3,频率单一、振幅不变。
振子就是对振动物体的抽象:忽略物体的形状和大小,用质点代替物体进行研究。这个代替振动物体的质点,就叫做振子。
振子在某一时刻所处的位置,用位移x表示。位移x就是以平衡位置为参照物(基点――基准点),得到的"振子在某一时刻所处的位置"的距离和方向。
我们对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。我们对匀速圆周运动和简谐振动研究时,基准点选择在圆心或平衡位置(不动的点)。
参照物本来就应该是在研究过程中保持静止(或假定为静止)的点,我们的物理思路,就是"从确定的量、不变的量出发进行研究"。
确定的量和不变的量有本质的区别,在对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。这是确定的量,却不一定是不变的量。特别在我们进行分段研究时,每一阶段的终点,就是下一阶段的始点。我们选择运动的始点为基准点,可以简化研究过程,这是服从于物理研究的"化繁为简"的原则,因此,不惜在不同的研究阶段,选择不同的基准点。
在研究匀速圆周运动和简谐振动时,由于宏观上的周期性和微观上的拓朴性,问题很复杂,所以不能选运动的始点,作基准点进行研究,而要选择确定而且不变的圆心或者平衡位置,作基准点进行研究,也是服从于物理研究的"化繁为简"的原则。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
简谐振动的特点是:1,有一个平衡位置(机械能耗尽之后,振子应该静止的位置)。2,有一个大小和方向都作周期性变化的回复力的作用。3,频率单一、振幅不变。
振子就是对振动物体的抽象:忽略物体的形状和大小,用质点代替物体进行研究。这个代替振动物体的质点,就叫做振子。
振子在某一时刻所处的位置,用位移x表示。位移x就是以平衡位置为参照物(基点――基准点),得到的"振子在某一时刻所处的位置"的距离和方向。
我们对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。我们对匀速圆周运动和简谐振动研究时,基准点选择在圆心或平衡位置(不动的点)。
参照物本来就应该是在研究过程中保持静止(或假定为静止)的点,我们的物理思路,就是"从确定的量、不变的量出发进行研究"。
确定的量和不变的量有本质的区别,在对匀变速直线运动和抛体运动进行研究时,基准点选择在运动的始点。这是确定的量,却不一定是不变的量。特别在我们进行分段研究时,每一阶段的终点,就是下一阶段的始点。我们选择运动的始点为基准点,可以简化研究过程,这是服从于物理研究的"化繁为简"的原则,因此,不惜在不同的研究阶段,选择不同的基准点。
在研究匀速圆周运动和简谐振动时,由于宏观上的周期性和微观上的拓朴性,问题很复杂,所以不能选运动的始点,作基准点进行研究,而要选择确定而且不变的圆心或者平衡位置,作基准点进行研究,也是服从于物理研究的"化繁为简"的原则。
在简谐振动中,振幅A就是位移x的大值,这是一个不变的量。
振子从某一状态(位置和速度)回到该状态所需要的短时间,叫做一个周期T。振子在一个周期中的振动,叫做一个全振动。振子在一秒钟内的全振动的"次数",叫做频率f。
周期T就是一次全振动的时间,频率f是一秒钟内全振动的次数,所以,Tf=1(四式等价的公式1)
圆频率ω(读作[oumiga])是一秒钟对应的圆心角。一次全振动对应的圆心角就是2π(即360度)。这是借用了匀速圆周运动的概念。在匀速圆周运动中,ω叫做角速度。当匀速圆周运动正交分解为简谐振动时,角速度就转化为圆频率。(也有人把圆频率叫做角频率的)
显然,ω=2πf(四式等价的公式3),(每秒全振动次数对应的角度)
ωT=2π(四式等价的公式2)(每个全振动对应的角度)
后,定义每分钟全振动的次数为"转速n",显然,n=60f(四式等价的公式4)
T、f、ω、n这四个量中,知道一个,其它三个就是已知的,所以这四个互相转化的公式,叫做"四式等价"。
只要物体作周期性的往复运动,就是振动。比如拍皮球,其v-t图对应于电工学中的锯齿波,所以也是振动。有人说:"拍皮球没有平衡位置,或者平衡位置不在运动的对称中心,所以不能算振动"。这样说的人,电工学肯定没有学好。
有一个数学分枝,叫做傅里叶积分,它可以把任何振动,分解为若干个简谐振动。这些简谐振动的频率,就是原始振动的整数倍,原始振动的主频率(基音),就是这些简谐振动的小频率。
其它倍频(泛音),振幅都比基音小得多。所以,这就构成非简谐振动的"音品"的概念。
人耳分辨发声体的过程,就是自发地、自动化地、本能地使用傅里叶积分的过程,非常巧妙。
由于声音的频率由声源决定,所以,无论声波如何传播到我们的耳朵,我们照样准确地辩认出发声体的特色。
折叠 广义上的振动
从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。
折叠 编辑本段 机械振动
折叠 定义
机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。机械振动有不同的分类方法。按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
自由振动:去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
GJC 流量开关 5025000JC 5025000 calibrated at 0.4, 0.5, 1.0, 2.0 & 5.0
GJC 流量开关 5025000 range 0.05-25ml/min
GJC 流量开关 Instruments Ltd 5025000
GJC 流量开关 Urgent Enquiry Configuring the host liquid flow meter
GJC 流量开关 PN2000 MODEL5025000 SN4-1579 Reading Resolution 0.01ml/min
GJC 流量开关 5025000 calibrated at 0.4, 0.5, 1.0, 2.0 & 5.0
GJC 流量开关 5025000 range 0.05-25ml/min
GJC 流量开关 5025000
GJC 流量开关 5025000 calibrated at 0.4, 0.5, 1.0, 2.0 & 5.0 ml/min
GJC 流量开关 5025000 No.2000EU calibrated at 1.0 ml/min
GJC 流量开关 5025000 calibrated at 1.0 ml/min
GJC 流量开关 model:5025000 SNR:4-939 power supply unit S127
GJC 流量开关 model:5025000 SNR:4-939 power supply unit S127
GJC 流量开关 5025000 flowmeter calibrated at 0.5 & 1.0 ml/min
GJC 流量开关 5025000 calibrated at 0.5&1.0 ml/min
GJC 流量开关 model:5025000 SNR:4-939 power supply unit S127
GJC 流量开关 5025000 calibrated at 0.5, 1.0 & 1.5 ml/min
GJC 流量开关 5025000 calibrated at 0.4, 0.5, 1.0, 2.0 & 5.0 ml/min
GJC 流量开关 5025000 No.2000EU calibrated at 1.0 ml/min
GJC 流量开关 HPLC Liquid Flowmeter. Model : 5025000 - Revision 4
GJC 流量开关 The model 5025000 flowmeter (Part No. 2000EU
GJC 流量开关 5025000 calibrated at 1.0ml/min (includes USB and software)
GJC 流量开关 5025000 calibrated at 1.0ml/min (includes USB and software)
GJC 流量开关 5025000 calibrated at 0.4, 0.5, 1.0, 2.0 & 5.0 ml/min (含校准证书)
GJC 流量开关 5025000 No.2000EU calibrated at 1.0 ml/min 流量检测装置
GJC 流量开关 5025000calibrated at 0.5, 1.0 & 2.0with USB Interface Option
GJC 流量开关 5025000 calibrated at 1.0 ml/min
GJC 流量开关 5025000 calibrated at 1.0ml/min (includes USB and software)
GJC 流量开关 5025000 calibrated at 1.0ml/min (includes USB and software)
GJC 流量开关 5025000calibrated at 0.5, 1.0 & 2.0with USB Interface Option
GJC 流量开关 5025000 calibrated at 1.0
GJC 流量开关 5025000 calibrated at 1.0
开关 CA10-A004-600-FT2-(0,,L1-L2,L2-L3,L3-L1)
开关 CA10-A058-600-FT2-(0,,L1,L2,L3)
开关 CA10-A203-600-FT2-(OFF,ON)
流量计 H601A-001-F1S14
时间继电器 CACTA-MT 30S 48V DC
电缆 CL-SE-S-15-SF
缓冲阀 MC225-H
光电开关 YK12PB8
ACE GS-28-300-EE-2500-X
电机 34511170 SK90 L/4 TF
风扇 4093140210 90 230/400V
调制解调器 3088A/I/EUI
DELTALOGIC ACCON-EasyLog Basic Win
压力开关 HDS-1-200-K-7-1GE009 KC3723
气缸 BZ 500.50.32.02.201.100 BZ 500.50/32.77.201.100
报按钮 N1305
编码器 560007011 2048PPR 22430437
冷却装置控制面板 ZKS 3AC 220V
安全门开关 FX2193
开关 SI30-DC4 PNP 20C TR SI30-DC4 PNP 20C TB
伺服控制器 M-TRAVERSE 3200-1841
电机 GM160LA 4 B35
喷嘴 632.361.17.CC.00.0
风扇 602.382.A3.07.00.1
螺母 SS12-ECH5S-80配套使用的螺母是NA8S
传感器 VMM6-2SO-D-N-8
传感器 VESVM10 5m G3NF*R2M-S3
编码器 IEV58-00011
电机 JM 132MA 4 B3
气动弹簧 709-437 配6.5x8 afx
油管 710-621 配6.5x8 afx
气袋 184-442 配6.5x8 afx
压力计 C37N-SA2 F37N-S
编码器 70-149 OBC-360E
变频器 ACM1K40015H (400V) ACM1K40022H
压力开关 PA-22PS/81223.81 0-20BAR
编码器 TS5013 N69-2048PPR
插脚 GW20576
比例阀 VPDBVE16E D1 HV01947 DV01
油冷风扇电机 TFCP132MA-6
扣环 49034915
GEWISS GW20296
传感器 311-C-RV-7-CO/HL/LF 0-5000PSIG
MSC-KIT MFP-K-OR500BN70(NBR70)
活性碳滤芯 H13,for type LMD 507/508,Handhepa 305X305X100(+2*6) separation degree of 99.997%
维修包 19.208.11
内孔抓手 LG20-30V
拖链 CPS050E.050.R150 CIST055E.50R150/F-2000L
roemann DN10 G3/8 PN500 ST/POM-NBR
圆柱形接近开关 QXC/AO-2F
感应线 SWLF4P-5000P
编码器 729798-01
支撑座 BJ795-06012
滑轮 6J300
滑轮 6J315
传感器(加接线盒) LA41K 305-00183+489-00004
液压阀 SS-G01-C5-R-C1-30 100V SS-G01-C5-R-C1-31 100V
BARRINGTON PRX-SO
灯泡 LU150/55/D/H/ECO
汽缸 K2000800050
阀针 27.08.098
开关 Z4V7H 332-11Y
联轴器 size 25
电磁阀线圈 8466000.9101(线圈)
三爪抓手 GD1708NC-B
泵 K224A SER#11983872
三点式气爪 GD306N-C
电磁阀阀体 8466000.9100(阀体)
电磁阀 8218222.0000
手动阀 PVT1MR-1-15A-G3360
联轴器 Rotex 19 steel 1/A-10 key 2JS9-1A/11H7
电机 DM1 180L8/4L
联轴器 ADS/R28-25H7-32H7 GWE 5104-28 25H7 - 32H7
油泵 PVH57QIC-RM-IS-10-C25T4-J4-0
面板 CH10-1D-Y549-05 EGF 的面板
开关 GLAB01C
传感器 LA66K 312-02562 1000mm 分辨率:0.01mm
O型圈 007923119
轴封 40012883
O型圈 007990619
O型圈 007991219
垫片 VA30439
0型圈 007914917
0型圈 007901119
0型圈 007901819
ELEKTRA 1TZ9001-1AA42-2FA4-Z
安全继电器 773721 773732
电阻 RAFS4-94/7
流量传感器 423981
测试仪 ProfiTest 204+
继电器+底座 2246 380VAC 2246FZ5400+ base 9946-10
带诊断DP头 VIPA972-0D030
插销 ACTUATOR-S-GT-LN
电容式物位开关 CP63.XXGMKRBMX L=250mm Y9TES-001-SN L1=10M
电机 MVSI 15/700-S02
液位开关 WE63.XXCGDRBMX L=1360mm Y9TES-004-SN L1=10M 音叉式
气缸 art.nr.264650
液位计 PRIME227C(1N84282300)
连接器 KPTC1E8-3ASCF97
电抗器 RWK212-11-KL 500VAC 50HZ 11A
电抗器 RWK212-16-KL 500VAC 50HZ 16A
电抗器 RWK212-7-KL 500VAC 50HZ 7A
开关 KG160 T103/D-A005E
有线移动测试单元 AVT-853 REV.B1 AVT-853 REV. FB / 853-004
气体侦测器 TS-1100EX
机器人模式开关 CH10A231 *FT S0 V750E/Z0 S0D V756/BKS/6C/A1 (lock E7)M999/470
编码器 S162EX.20/360
气缸 CHP653
光电开关 GTE6 P1211
液压阀 CABG-LHN
带电缆的插座 EVC01E
整流器 UPORT 1650-8
液位计 S424DA/F68/1
自动润滑泵 AMZ-III 100V
压力传感器 VPRQ-20MP
变频器 SJ100-015NFE(360HZ) WJ200-015HFC
电机 JM 71B 4 B5
压力传感器 311-A-PZ-2-Cj 311-B-PZ-2-CJ
液控单向阀 CPG-10-04-50
回油泵 A37-FR01B-K-32
回油泵 A70-FR01BS-60
电磁阀 E-DSG-01-2B2-D24-70
调速阀 MSW-01-X-05
电磁阀 RBG-03-10
电容式物位开关 CP63.XXGMKRBMX L=625mm Y9TES-003-SN L1=10M
电容式物位开关 CP63.XXGMKRBMX L=660mm Y9TES-013-SN L1=10M
液位开关 WE63.XXCGDRBMX L=3370mm Y9TES-005-SN L1=10M 音叉式
液位开关 WE63.XXCGDRBMX L=1390mm Y9TES-014-SN L1=10M 音叉式
液位开关 WE63.XXCGDRBMX L=3360mm Y9TES-015-SN L1=10M 音叉式
转换开关 CA10 PC8866-3 E24
转换开关 CA10 PC8867-1 E24
开关 CA10 A200-600 E24
选择开关 CA10 A218-600 E24
选择开关 CA10 A222-600 E24
振动探头 1187ICQ-10 MS002
夹钳 6004-MM
夹钳 207-LB
千斤顶 4T-70161
千斤顶 4T-70163
缓冲器 WE-M0.35*LAP
温度继电器 TR800-WEB
视频转换器 VB31PT
变压器 3M 5000-400/400
变压器 XHM 3000-230-400/230
电机编码器线 FC-CFBM4DD-CDAA-E035
减速机 5622061
气缸 K50 A10 T12 90 V50 A10 T12 90
压力开关 SZ070P
联轴器 ROTEX GS28 98SHA-GS 2.5/35/2.5/22
触点牌 LPX C10
触点排 LPX C01
继电器 RZ3A60A55
开关电源 NNS15-12
电磁阀线圈 82A-AC-000-TM-DDAP-IDA
离合器 314-17-001
编码器 CE100M 100-00348
线性皮带传动 B3W10 BWS18 SK95.000 SDR-YM013003
流量计 855R10D7R211461125 88003032
流量计 807R25D 72114 155 88045751
ELOBAU 161271AC 161271AZ
滤芯 PI 3105 PS 10/K99
电机 RL71A 2 (RL0004)
变频器 SJ700-450HFEF2 AC400V
气缸 MXB25P/BWS18/SM2425/SDB-/YM013003/DC876.3/MP3
维修组件 RKBC406SK48
泵(软管接口) PMD-1563B2F
NIPPON PAXEG205UUP-025
流量计 VS0,1 GPO12V 32N11/4 - 10...28VDC
接近开关 IM020BM37VB
探针 GKS-502 356 250 A 1502
液位计 CLM-36N-12-G-I E200
三爪卡盘 ES-200/3 K 6/26+21B
安全开关 OPTO2S
联轴器 K410 Φ10mm
压力变送器 TR-PS2W-400BAR
变压器 MDG 15-400/24 ART# 85779 85927
模块 MCC312-1600V
位移传感器 RPS0250MP051S1B6100 RPS0250MK051S1B6100
编码器 RE-15-1-A15
振动器 NEG5050
阀 CXFA-XCN-DBJ/S
电动机 6SM63B2
接线盒 V10027-D00
电磁阀 V405523D-C313A
压力开关 P5S-20-R3B
压力开关 900.9172.850 SN:461905-093
联轴器 BOWEX M-24 d1=14 d2=20
肘管管托 27833-161
EUCHNER CES-A-BBN-C04
直线位移感应器 AX/1/S LVDT Probe with BICM and setup
连接线 S-12-4FVW-100-NNLN
传感器 DW-LS-703-M18-002
电机 MTA56G4
卷筒驱动电机 80i 2P 0.12kw
传感器 6809610+6809595
分配器 SG606A
接头 M5CB-1016-303-V
气缸 10A-2 TC 80B90-AB-Y
真空压力转换器 860-0.00/160.00-w-12-3-p
编码器 RSI 503 PART NO:537401-01 1024PPR
膨胀节 SA-10 DN25 PN10 length185mm
控制元件 ACTUATOR-Z-G/V25
电磁制动器线圈 00.08.100-0967
称重传感器 LC703-200
报器 LCE-302AFB-RYG
比例换向阀 DKZOR-AE-173-L3/I
液位计 LMK809 396-4000-B-C-1-1-3-2-004-000
轴承 LFL32-SF
导轨 LFS32-N(2100mm)
隔膜泵 233500
控制器 GMA41
变送器 CC28
继电器 09C060
电磁阀 20740-24VCCR424E20755
轴承 STL-30-G
接头 FS326
螺旋千斤顶 KTE 1805-140-1 GKT9005-140-1
夹钳 93013
检验台 31000-04
接头 C5F-20-ENP-V
接头 M5SB-1000-V
O型圈 OR-516-40-V
O型圈 OR-516-40-E
接头 OR-516-40-AF
卡套 MCB-16-FR
卡套 MCB-16-FF
火焰检测器 D-LX100UL/97-EX
电机 AM132MZA4 7.5KW 380V AMHE 132M TA4
软连接 A-1 DN250 PN10 Length:175mm
稳速器 KHA64-100
加热器 03504.0-01
传感器 74-1352H-S4
液位传感器 SN62.XXAGHKMXX
选择开关 DH10-1 A-G926-603*KN1+S1M470/A1A6+S1CT
风机 C22S40HKBE00
同步带轮 S16642800 规格:P07-5001-10.01-00.07G1L
压头 040MPVI434 $01 ETN
压头 040MPVI433$01 ETN
压头 040MPVI430-$01 ETN
直动溢流阀 DBT2-LAN-150
膜片 7400.022460
两位两通换向阀 SV08-21-0-N-24-DL
A+P 12.2036.0403
压力开关 8472.78.5717 4-20mA
编码器 515412-03
压头 110MPVI433$01 ETC
压头 040MPVI433 ETN
压头 040MPVI435$01 ETC
压头 040MPVI433$01 ETC
压头 040MPNI430$01 ETN
压头 200MPVI430$01 ETN
压头 PPE DUR 25 50 12A
压头 PPE DUR 50 50 12A
压头 110MPVI430
滤芯 PI 25006 RN PS 25
气缸 89B20-010-1LA
气缸 89B20-010-1RA
液压阀 SS-G03-C4-R-C1-J21 330V 110V50H2 SS-G03-C4-R-C1-J22 330V 110V50H2
旋转接头 1683KNPTD
电机 MR63A-2
RF控制器 269XB3078 BID P170M
读写头 247XXB2913
读写控制器线 495XXB4512
siemens 3RA14258XC211BB4
LINCOLN 223-12295-2
电机 FCP100L-8
弹簧 1051.020.001
感应器 671271MU0-5M
安全模块 462121E1U1
环氧树脂 3190
环氧树脂 3060
变频电动机 ZBA 160 B4 H B280
继电器 DIA53S72420AB004
传感器 MTN/IEIRGW050
压力开关 0166 411 28 1 611
压力开关 0166 415 28 1 615
机器人润滑油 TMO150,20L
压力开关 EDS 306-2-100-025
电子凸轮 LOCON17-0360-HL
摇摆夹 41-5022-21
旋转缸 41-5022-22
配件 43-0000-14
固定套环 44-0065-00
压板 41-1131-01 44-1131-01
Openlink RS485模块 2025160
面板式仪表 APM
电动润滑泵 P203-8XLB0-1K7-24-2 A1.01 U=24VDC P=72W
阀 RDJA-LWN
弹簧 CM
缓冲器 LR OEM 1.5M*2/MF8707
螺丝 JNM20*1.5
阀块 PMW/S
传感器 GYLS-370-AD-M-CN 更新型号:GYcAT4-370-103/S-M-M3-CN-AD
开关 CHR10 A203-920VE2
探查器与主板连接线 1402-0308-0601
触摸屏 GOT-3570T-RC-DC W/512MB DRAM2GB CF
气缸 8PW-084-1
吊耳 VLBS-U-6.7
溢流阀 RDJA-LAV
传感器 LA 66K 312-00016
UPS电源 ME800 ACX11MES80000
电机驱动卡 10009889
电机 WAF30 DT71D4/ASB1 WAF30 DRS71S4/ASB1
减速机 MW156-0004/35-OOX-4:1-3500
传感器 MTN/1185HCQ-10
电感式传感器 C11/2P35PRN
传感器 C12/2P35PRN
卡爪气缸 14003 PP RE
电流传感器 CS-650-R1
纵向安全弹簧 VF AF-ME78
拉线 VF F05-4500
熔断器辅助触点 170H0069
密封件 1347853
保险丝 FWH-250A
压力变送器 A-10 0-10bar
软件 ACCON-EasyLog IN S7 classic
软件 ACCON-EasyLog OUT CSV
压力调节器 QB2TBNICZP145PSG-3D +PSR-2PN +DSBEY00ZP145PSG-A
电缆 QBT-C-6
称重传感器 U1A 50N 2mV/V
电缆 WKC4.4T-2//2M 货号:6625025
光电开关 HA-925
压力变送器 C268 0-1500PA 24VDC 4-20ma ±1%FS
定位器 V100E
延长线 RW-05AL-3
联轴器 EK2/150/B/25PFN/25PFN
联轴器 EK2/150/B/35/35
编码器 含配件 FG40S-1200G-90G-NG+ 外壳10313+联轴器HK 522-11/12+法兰ZWI-Fla+
陶瓷片 48900016
电机 2M145
编码器 RV1040
伺服电机 NX860VAJR9000
伺服电机 NX620EAVR7300
伺服电机 NX630EANR7300
联轴器 AKD-200-28-35
气缸 P2520R-50/20-200
驱动器 DPD27050
驱动器 DSD16004
驱动器 DSD16016
反馈电缆 CD1UA1F1R0015
电缆 CD1U1P1F1R0015
电缆 6537P0051
编码卡 SS6611
液压扳手配套泵 TPE-554W
FIREYE MEC120RD