其他品牌 品牌
经销商厂商性质
上海市所在地
备品备件WENGLOR 放大器301251104
面议备品备件GEMU 554 50D 1 9 51 1
面议备品备件BERNSTEIN SRF-2/1/1-E-H
面议备品备件N813.4ANE KNF
面议QY-1044.0013 泵 SPECK备品备件
面议NT 63-K-MS-M3/1120 备品备件
面议VECTOR 备品备件CANAPE
面议VECTOR VN1670 备品备件
面议CBX09.1152/JV/PA staubli 备品备件
面议SECOMP 21.99.8760 光缆备品备件
面议AECABLE 2Y EVA 备品备件 VECTOR
面议9900015.1 OPTRON 备品备件
面议1062400500 SAIL-M12WM12W-PB-5.0E
1062401000 SAIL-M12WM12W-PB-10E
1062430000 PF RS 100 BK SET 160mm
1062440000 SLD 5.08/24/90G 3.2SN BK BX
1062490000 IE-C6ES8UG0550A40A40-E
1062520000 WTL 6/1 EN STB SW
1062530000 IE-C5ES8UG0020A44A40-X
1062550000 IE-FM5Z2VO0005MLD0LD0X
1062570000 IE-FM5Z2VO0002MLD0LD0X
1062580000 IE-FM5Z2VO0010MLD0LD0X
1062590000 IE-BSC-V14M-SCRJ-MM-C
1062600000 IE-BSC-V14M-SCRJ-SM-C
1062610000 IE-BSC-V14M-LCD-MM-C
1062620000 IE-BSC-V14M-LCD-SM-C
1062660000 WQV 6/5
1062670000 WQV 6/6
1062680000 WQV 6/7
1062700000 KISC M2.5X4.5 WTR2.5
1062720000 WQV 6/12
1062730000 LSF-SMT 5.00/02/135 3.5SN BK TU INK
1062740000 LSF-SMT 5.00/02/135 3.5SN BK TU INK
1062860000 WAD 27 M. BL.
1062890000 SAI-AU M12 EIP 16DI8DOS
1062940000 SL 7.62/08/90B 3.2SN BK BX
1062960000 WAD 27 NEUTRAL
1062970000 BLZ 5.08/04/180F AU OR BX
1062980000 SL-SMT 3.50/06/90G 3.2AU SW RL
1063010000 SL-SMT 3.50/14/90G 3.2AU SW RL
1063020000 SL-SMT 3.50/19/90G 3.2AU SW RL
1063040000 SL 5.00/18/180B 3.2SN GN BX
1063050000 SL 5.08/04/180B 3.2SN GN BX
1063060000 SL 5.08/12/180B 3.2SN GN BX
1063070000 BLZP 5.00HC/03/180 SN BK BX PRT
1063110000 AP VSSC6
1063120000 AP VSSC4
1063140000 SHL-SMT 5.00/03GR 1.5BX
1063150000 SHL-SMT 5.00/04GR 1.5BX
1063170000 SHL-SMT 5.00/03GR 1.5RL
1063180000 SHL-SMT 5.00/04GR 1.5RL
1063210000 SHL-SMT 5.00/03GL 1.5BX
1063220000 SHL-SMT 5.00/04GL 1.5BX
1063240000 SHL-SMT 5.00/03GL 1.5RL
1063250000 SHL-SMT 5.00/04GL 1.5RL
1063260000 BHZ 5.00/02/90LH BK/OR
1063270000 BHZ 5.00/03/90LH BK/OR
1063280000 BHZ 5.00/04/90LH BK/OR
1063300000 WQV 120/2
1063310000 IE-C5ES8UG0100A40A40-X
1063320000 IE-C5ES8UG0100A45A40-X
1063330000 LMZF 5.08/15/180 4.5SN BK BX
1063340000 BLZF 3.50/08/180F SN SW PRT
1063350000 B2L 3.50/16/180LH SN BK BX PRT
1063370000 BLZF 5.08/02/180F SN BK BX PRT
1063400000 WQV 120/3
1063410000 BL 3.50/03/180F SN BK BX PRT
1063420000 BL 3.50/18/180F SN BK BX PRT
1063430000 BL 3.50/21/180F SN BK BX PRT
1063500000 WQV 70/95/2
1063600000 WQV 70/95/3
1063700000 KISC M6X16-Z3
1063720000 VSSC4 CL 12VDC 0.5A
1063730000 VSSC4 CL 24VAC/DC 0.5A
1063740000 VSSC4 CL 48VAC/DC 0.5A
1063760000 VSSC4 CL FG 12VDC 0.5A
1063770000 VSSC4 CL FG24VAC/DC0.5A
1063780000 VSSC4 CL FG48VAC/DC0.5A
1063810000 VSSC4 CL FG 24VAC/DC Ex
1063820000 VSSC4 CL FG 48VAC/DC Ex
1063830000 VSSC4 SL 12VDC 0.5A
1063840000 VSSC4 SL 24VAC/DC 0.5A
1063850000 IE-C5ES8UG0015A45A40-X
1063860000 VSSC4 SL 48VAC/DC 0.5A
1063870000 VSSC4 SL 60VAC/DC 0.5A
1063880000 VSSC4 SL FG 12VDC 0.5A
1063890000 VSSC4 SL FG24VAC/DC0.5A
1063900000 WQV 16-2.5
1063930000 VSSC4 SL FG 24VAC/DC Ex
1063940000 VSSC4 SL FG 48VAC/DC Ex
1063950000 VSSC4 MOV 12VDC
1063960000 VSSC4 MOV 24VAC/DC
1063970000 VSSC4 MOV 48VAC/DC
1063980000 VSSC4 MOV 60VAC/DC
1063990000 VSSC4 MOV 120VAC/DC
1064000000 WQV 16-4/6
1064010000 VSSC4 MOV 150VAC/DC
1064020000 VSSC4 MOV 240VAC/DC
1064030000 VSSC4 GDT 24VAC/DC 20kA
1064040000 VSSC4 GDT55VUC 20kA EX
1064050000 VSSC4 GDT 110VAC/DC20kA
1064060000 VSSC4 GDT 240VAC/DC20kA
1064070000 VSSC4 TAZ 12VDC
1064080000 VSSC4 TAZ 24VAC/DC
1064090000 VSSC4 TAZ 48VAC/DC
1064100000 WQV 35-2.5
1064120000 VSSC4 RC 24VAC/DC
1064130000 VSSC4 RC 240VAC/DC
1064150000 VSSC6 CL 12VDC 0.5A
1064170000 VSSC6 CL 24VAC/DC 0.5A
1064190000 VSSC6 CL 48VAC/DC 0.5A
1064200000 WQV 35-4/6
1064210000 VSSC6 CL 60VAC/DC 0.5A
1064220000 VSSC6 TR CL 12VDC 0.5A
1064230000 VSSC6 TRCL24VAC/DC0.5A
1064240000 VSSC6 TRCL48VAC/DC0.5A
1064250000 VSSC6 TRCL60VAC/DC0.5A
1064260000 VSSC6 CL FG 12VDC 0.5A
1064270000 VSSC6 CLFG24VAC/DC0.5A
1064280000 VSSC6 CLFG48VAC/DC0.5A
1064290000 VSSC6 CLFG60VAC/DC0.5A
1064300000 VSSC6TRCLFG12VDC0.5A
1064310000 VSSC6TRCLFG24VAC/DC0.5A
1064320000 VSSC6TRCLFG48VAC/DC0.5A
1064330000 VSSC6TRCLFG60VAC/DC0.5A
1064340000 VSSC6SL LD 12VDC 0.5A
1064350000 VSSC6SL LD24VAC/DC0.5A
1064380000 VSSC6TRSLLD12VDC0.5A
1064390000 VSSC6TRSLLD24VAC/DC0.5A
1064400000 VSSC6TRSLLD48VAC/DC0.5A
1064420000 VSSC6SL FG LD12VDC0.5A
1064430000 VSSC6SLFGLD24VAC/DC0.5A
1064440000 VSSC6SLFGLD48VAC/DC0.5A
1064460000 WAH 35
1064470000 VSSC6SLFGLD60VAC/DC0.5A
1064480000 WAH 35 BL
1064490000 VSSC6TRSLFGLD12VDC0.5A
1064500000 VSSC6TRSLFGLD24VUC 0.5A
1064530000 VSSC6 MOV 12VDC
1064540000 VSSC6 MOV 24VAC/DC
1064550000 WAH 70 HG
1064560000 WAH 70 BE
1064570000 VSSC6 MOV 48VAC/DC
1064580000 WAH 70 BL
1064600000 VSSC6 MOV 60VAC/DC
1064610000 VSSC6 MOV 120VAC/DC
1064620000 VSSC6 MOV 150VAC/DC
1064630000 VSSC6 MOV 240VAC/DC
1064640000 VSSC6 GDT 24VAC/DC 10kA
1064660000 WAH 120
1064680000 WAH 120 BL
1064690000 VSSC6 GDT 110VAC/DC10kA
1064700000 VSSC6 GDT 110VAC/DC20kA
1064710000 VSSC6 GDT 240VAC/DC10kA
1064720000 VSSC6 GDT 240VAC/DC20kA
1064730000 VSSC6 TAZ 12VDC
1064740000 VSSC6 TAZ 24VAC/DC
1064760000 WAH 185/300 BE
1064780000 WAH 185/300 BL
1064800000 VSSC6 TRLDMOV 12VDC
1064810000 VSSC6 TRLDMOV 24VAC/DC
1064820000 VSSC6 TRLDMOV 48VAC/DC
1064840000 VSSC6 TRLDMOV120VAC/DC
1064850000 VSSC6 TRLDMOV150VAC/DC
1064860000 VSSC6 TRLDMOV240VAC/DC
1064870000 VSSC6TRGDT24VAC/DC10kA
1064890000 VSSC6TRGDT110VAC/DC10kA
1064900000 WQL 2 WFF35
1064920000 VSSC6TRGDT240VAC/DC10kA
1064950000 VSSC6 TRLDTAZ 24VAC/DC
1064980000 VSSC6 RS485
1064990000 VSSC6 RS232
1065000000 WQL 2 WFF70
1065010000 VSSC6 RS485 DP
1065020000 VSSC6 RS485 PA EX
1065080000 BLDF 5.08/05/180F SN OR BX
1065090000 BLDF 5.08/06/180F SN OR BX
1065100000 WQL 2 WFF120
1065110000 BLDF 5.08/07/180F SN OR BX
1065120000 BLDF 5.08/08/180F SN OR BX
1065130000 BLDF 5.08/02/180LR SN OR BX
1065140000 BLDF 5.08/03/180LR SN OR BX
1065150000 BLDF 5.08/04/180LR SN OR BX
1065160000 BLDF 5.08/05/180LR SN OR BX
1065170000 BLDF 5.08/06/180LR SN OR BX
1065180000 BLDF 5.08/07/180LR SN OR BX
1065190000 BLDF 5.08/08/180LR SN OR BX
1065200000 WQL 2 WFF185
1065210000 BLDF 5.08/02/180LH SN OR BX
1065220000 BLDF 5.08/03/180LH SN OR BX
1065230000 BLDF 5.08/04/180LH SN OR BX
1065240000 BLDF 5.08/05/180LH SN OR BX
1065250000 BLDF 5.08/06/180LH SN OR BX
1065260000 BLDF 5.08/07/180LH SN OR BX
1065270000 BLDF 5.08/08/180LH SN OR BX
1065290000 S2LD-THR 3.50/08/90G 3.2SN BK BX
1065300000 WQL 2 WFF300
1065320000 S2LD-THR 3.50/16/90G 3.2SN BK BX
1065330000 S2LD-THR 3.50/20/90G 3.2SN BK BX
1065340000 S2LD-THR 3.50/24/90G 3.2SN BK BX
1065350000 S2LD-THR 3.50/28/90G 3.2SN BK BX
1065360000 S2LD-THR 3.50/32/90G 3.2SN BK BX
1065370000 S2LD-THR 3.50/36/90G 3.2SN BK BX
1065400000 WQL 3 WFF35
1065500000 WQL 3 WFF70
1065600000 WQL 3 WFF120
1065700000 WQL 3 WFF185
1065740000 BLZ 5.00/03/180 SN GR PRT
1065750000 SL 3.50/04/90 3.2SN GY BX
1065770000 SL 5.00/03/90B 3.2SN GR BX
1065800000 WQL 3 WFF300
1065840000 BL 3.50/04/180 SN TGY BX PRT
1066000000 WZAD 70/95
1066040000 PU I 0 N/PE TSG+ 350V
1066100000 WZAD120
1066200000 WZAF 70
1066300000 WZAF 120
1066400000 WZAF 185
1066430000 SL 5.00/04/180 3.2SN GR BX
1066440000 SL 5.00/12/180 3.2SN GY BX
1066450000 SL 5.00/20/180 3.2SN GY BX
1066490000 VSSC6TRCLFG24VAC/DC EX
1066500000 WZAF 300
1066830000 SL 5.00/03/180 3.2SN TGY BX
1066850000 IE-C5ES8UG0010B41B41-E
1066860000 IE-C5ES8UG0020B41B41-E
1066870000 IE-C5ES8UG0050B41B41-E
1066880000 IE-C5ES8UG0100B41B41-E
1067100000 WTW WFF35
1067200000 WTW WFF70
1067230000 AP VSSC6 LB
1067240000 AP VSSC4 LB
1067250000 ACT20P-BRIDGE-S
1067300000 WTW WFF120
1067380000 IE-PI-SCRJ-MM
1067390000 IE-PI-SCRJ-SM
1067400000 WTW WFF185/300
1067410000 IE-PI-SCRJ-POF
1067430000 LSF-SMT 5.00/4/135 1.5SN BK RL PRT
1067470000 EMC-SET
1067490000 EMC-TIE
HAMMA外来油分离器HAMMA手动折射仪
HAMMA外来油分离器HAMMA手动折射仪
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。
设备管口提供配对的法兰、螺栓、垫片等。
通常,气体入口设计分三种形式:
a) 上部进气
b) 中部进气
c) 下部进气
对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。
旋风分离器采用整体立式结构,体积小,重量轻。旋风管立式布置,由两水平隔板分成3个独立的工作室,为便于内部检查,每个工作室单独设置1个人孔或手孔。旋风分离器包括壳体部分、进气、出气、放空、分离单元、人孔、手孔、人工清灰和阀控排尘口、支腿等结构。 [1]
编辑
整体结构的改变
在旋风除尘器内部的旋转气流中,颗粒物受离心力作用作径向向外(朝向筒锥壁)运动,运动速度可由颗粒物所受的离心力及气流阻力的运动方程求得。显然旋风除尘器分离的目的就是使颗粒物尽快到达筒锥体边壁。因此,延长颗粒物在旋风除尘器中的运动时间,在气流作用下提高颗粒物与筒锥体壁相撞的概率,可以提高旋风除尘器除尘效率。
Y.Zhu(2001年)提出在普通旋风除尘器中增加一个筒壁,这一筒壁将旋风除尘设备内部空间划分为两个环形区域,同时,排气芯管被移到了下方,排气芯管中的上升气流也变成了下降气流,颗粒物在内外两个外环形区域内都得到了分离,事实上,这种旋风分离器相当于将两个旋风子合到了一起。从理论上讲,这种改进提高了颗粒物被收集的概率。Y.Zhu型旋风除尘器试验结果(气流流量范围为 10L/min~40L/min,对粒径范围为0.6μm~8.8μm颗粒物)与Stairmand旋风除尘器的进行了比较有:改进后的旋风除尘器,除尘效率得到提高,并且随气流流量的增大而增大;同时,对于相同无因次尺寸的旋风除尘器来说,前者的阻力也小于后者。Y.Zhu考虑各方面因素给出相应优化综合指标得出改进旋风除尘器性能优于传统的旋风除尘器。这种改动后的旋风除尘器较原有传统旋风除尘器结构稍为复杂。
在原有旋风除尘器结构上增加附加件
实际应用中的系统都比较庞大,采用新的旋风除尘器替代原有旋风除尘器,势必导致工程量和成本比较大。基于这一想法,很多研究者寻找不改变原有旋风除尘器结构,而通过增加附加部件为提高旋风性能。
由于旋风除尘器对微细颗粒物效率较低,尤其对PM10(粉尘粒径小于10μm的颗粒物)的除尘效率随着颗粒直径减小逐渐降低。也就是说,在旋风除尘器的运行过程中,绝大部分微细粉尘穿透了分离区域,导致对微细粉尘效率下降。A.Plomp等(1996年)提出了加装二次分离附件的一种旋风除尘器,见图3示意图。二次分离附件设置在旋风除尘器本体顶部,称之为POC(post cyclone)。
POC二次分离作用是利用排气芯管强旋流作用使微细粉尘受离心力作用向边壁运动,并与挡板相撞后,通过缝隙1掉入挡板下部的壳体中,另一部分即使在一开始没有与边壁相撞,但由于始终受到离心力的作用,在到达POC顶部时,其中也有很大一部分通过缝隙2处而进入挡板与壳体之间的空间,随后由于 POC中主气流的约10%通过缝隙形成渗透流,在渗透推动下,颗粒物被吹出壳体。
研究结果得知,在特定结构尺寸和运行条件下总效率比改进前提高了2%~20%;POC的阻力约为旋风除尘器本体10%,该阻力与渗透气流量无关(在所给参数范围内);对于直径较大的旋风除尘器,尤其在原旋风除尘器性能不是很高的情况下,加装POC的办法对于提高旋风分离的性能很有效。POC装置对3μm以上粉尘分离很有效,对3μm以下的粉尘效果不显著;渗透流量及POC装置的离心力对POC的性能影响显著;采用穿孔 (较小)内挡板可提高分离效率。
局部结构改进
许多研究者通过旋风除尘器内部气流流动研究认为:旋风除尘器气流速度分布在径向上呈轴不对称或出现偏心。尤其在锥体下部靠近排尘口附近,有明显的"偏心";排气管下口附近,径向气流速度较大,有"短路"现象。气流偏心或短路不利于粉尘分离。
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。
设备管口提供配对的法兰、螺栓、垫片等。
通常,气体入口设计分三种形式:
a) 上部进气
b) 中部进气
c) 下部进气
对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。
旋风分离器采用整体立式结构,体积小,重量轻。旋风管立式布置,由两水平隔板分成3个独立的工作室,为便于内部检查,每个工作室单独设置1个人孔或手孔。旋风分离器包括壳体部分、进气、出气、放空、分离单元、人孔、手孔、人工清灰和阀控排尘口、支腿等结构。 [1]
编辑
整体结构的改变
在旋风除尘器内部的旋转气流中,颗粒物受离心力作用作径向向外(朝向筒锥壁)运动,运动速度可由颗粒物所受的离心力及气流阻力的运动方程求得。显然旋风除尘器分离的目的就是使颗粒物尽快到达筒锥体边壁。因此,延长颗粒物在旋风除尘器中的运动时间,在气流作用下提高颗粒物与筒锥体壁相撞的概率,可以提高旋风除尘器除尘效率。
Y.Zhu(2001年)提出在普通旋风除尘器中增加一个筒壁,这一筒壁将旋风除尘设备内部空间划分为两个环形区域,同时,排气芯管被移到了下方,排气芯管中的上升气流也变成了下降气流,颗粒物在内外两个外环形区域内都得到了分离,事实上,这种旋风分离器相当于将两个旋风子合到了一起。从理论上讲,这种改进提高了颗粒物被收集的概率。Y.Zhu型旋风除尘器试验结果(气流流量范围为 10L/min~40L/min,对粒径范围为0.6μm~8.8μm颗粒物)与Stairmand旋风除尘器的进行了比较有:改进后的旋风除尘器,除尘效率得到提高,并且随气流流量的增大而增大;同时,对于相同无因次尺寸的旋风除尘器来说,前者的阻力也小于后者。Y.Zhu考虑各方面因素给出相应优化综合指标得出改进旋风除尘器性能优于传统的旋风除尘器。这种改动后的旋风除尘器较原有传统旋风除尘器结构稍为复杂。
在原有旋风除尘器结构上增加附加件
实际应用中的系统都比较庞大,采用新的旋风除尘器替代原有旋风除尘器,势必导致工程量和成本比较大。基于这一想法,很多研究者寻找不改变原有旋风除尘器结构,而通过增加附加部件为提高旋风性能。
由于旋风除尘器对微细颗粒物效率较低,尤其对PM10(粉尘粒径小于10μm的颗粒物)的除尘效率随着颗粒直径减小逐渐降低。也就是说,在旋风除尘器的运行过程中,绝大部分微细粉尘穿透了分离区域,导致对微细粉尘效率下降。A.Plomp等(1996年)提出了加装二次分离附件的一种旋风除尘器,见图3示意图。二次分离附件设置在旋风除尘器本体顶部,称之为POC(post cyclone)。
POC二次分离作用是利用排气芯管强旋流作用使微细粉尘受离心力作用向边壁运动,并与挡板相撞后,通过缝隙1掉入挡板下部的壳体中,另一部分即使在一开始没有与边壁相撞,但由于始终受到离心力的作用,在到达POC顶部时,其中也有很大一部分通过缝隙2处而进入挡板与壳体之间的空间,随后由于 POC中主气流的约10%通过缝隙形成渗透流,在渗透推动下,颗粒物被吹出壳体。
研究结果得知,在特定结构尺寸和运行条件下总效率比改进前提高了2%~20%;POC的阻力约为旋风除尘器本体10%,该阻力与渗透气流量无关(在所给参数范围内);对于直径较大的旋风除尘器,尤其在原旋风除尘器性能不是很高的情况下,加装POC的办法对于提高旋风分离的性能很有效。POC装置对3μm以上粉尘分离很有效,对3μm以下的粉尘效果不显著;渗透流量及POC装置的离心力对POC的性能影响显著;采用穿孔 (较小)内挡板可提高分离效率。
局部结构改进
许多研究者通过旋风除尘器内部气流流动研究认为:旋风除尘器气流速度分布在径向上呈轴不对称或出现偏心。尤其在锥体下部靠近排尘口附近,有明显的"偏心";排气管下口附近,径向气流速度较大,有"短路"现象。气流偏心或短路不利于粉尘分离。
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。
设备管口提供配对的法兰、螺栓、垫片等。
通常,气体入口设计分三种形式:
a) 上部进气
b) 中部进气
c) 下部进气
对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。
旋风分离器采用整体立式结构,体积小,重量轻。旋风管立式布置,由两水平隔板分成3个独立的工作室,为便于内部检查,每个工作室单独设置1个人孔或手孔。旋风分离器包括壳体部分、进气、出气、放空、分离单元、人孔、手孔、人工清灰和阀控排尘口、支腿等结构。 [1]
编辑
整体结构的改变
在旋风除尘器内部的旋转气流中,颗粒物受离心力作用作径向向外(朝向筒锥壁)运动,运动速度可由颗粒物所受的离心力及气流阻力的运动方程求得。显然旋风除尘器分离的目的就是使颗粒物尽快到达筒锥体边壁。因此,延长颗粒物在旋风除尘器中的运动时间,在气流作用下提高颗粒物与筒锥体壁相撞的概率,可以提高旋风除尘器除尘效率。
Y.Zhu(2001年)提出在普通旋风除尘器中增加一个筒壁,这一筒壁将旋风除尘设备内部空间划分为两个环形区域,同时,排气芯管被移到了下方,排气芯管中的上升气流也变成了下降气流,颗粒物在内外两个外环形区域内都得到了分离,事实上,这种旋风分离器相当于将两个旋风子合到了一起。从理论上讲,这种改进提高了颗粒物被收集的概率。Y.Zhu型旋风除尘器试验结果(气流流量范围为 10L/min~40L/min,对粒径范围为0.6μm~8.8μm颗粒物)与Stairmand旋风除尘器的进行了比较有:改进后的旋风除尘器,除尘效率得到提高,并且随气流流量的增大而增大;同时,对于相同无因次尺寸的旋风除尘器来说,前者的阻力也小于后者。Y.Zhu考虑各方面因素给出相应优化综合指标得出改进旋风除尘器性能优于传统的旋风除尘器。这种改动后的旋风除尘器较原有传统旋风除尘器结构稍为复杂。
在原有旋风除尘器结构上增加附加件
实际应用中的系统都比较庞大,采用新的旋风除尘器替代原有旋风除尘器,势必导致工程量和成本比较大。基于这一想法,很多研究者寻找不改变原有旋风除尘器结构,而通过增加附加部件为提高旋风性能。
由于旋风除尘器对微细颗粒物效率较低,尤其对PM10(粉尘粒径小于10μm的颗粒物)的除尘效率随着颗粒直径减小逐渐降低。也就是说,在旋风除尘器的运行过程中,绝大部分微细粉尘穿透了分离区域,导致对微细粉尘效率下降。A.Plomp等(1996年)提出了加装二次分离附件的一种旋风除尘器,见图3示意图。二次分离附件设置在旋风除尘器本体顶部,称之为POC(post cyclone)。
POC二次分离作用是利用排气芯管强旋流作用使微细粉尘受离心力作用向边壁运动,并与挡板相撞后,通过缝隙1掉入挡板下部的壳体中,另一部分即使在一开始没有与边壁相撞,但由于始终受到离心力的作用,在到达POC顶部时,其中也有很大一部分通过缝隙2处而进入挡板与壳体之间的空间,随后由于 POC中主气流的约10%通过缝隙形成渗透流,在渗透推动下,颗粒物被吹出壳体。
研究结果得知,在特定结构尺寸和运行条件下总效率比改进前提高了2%~20%;POC的阻力约为旋风除尘器本体10%,该阻力与渗透气流量无关(在所给参数范围内);对于直径较大的旋风除尘器,尤其在原旋风除尘器性能不是很高的情况下,加装POC的办法对于提高旋风分离的性能很有效。POC装置对3μm以上粉尘分离很有效,对3μm以下的粉尘效果不显著;渗透流量及POC装置的离心力对POC的性能影响显著;采用穿孔 (较小)内挡板可提高分离效率。
局部结构改进
许多研究者通过旋风除尘器内部气流流动研究认为:旋风除尘器气流速度分布在径向上呈轴不对称或出现偏心。尤其在锥体下部靠近排尘口附近,有明显的"偏心";排气管下口附近,径向气流速度较大,有"短路"现象。气流偏心或短路不利于粉尘分离。
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。
设备管口提供配对的法兰、螺栓、垫片等。
通常,气体入口设计分三种形式:
a) 上部进气
b) 中部进气
c) 下部进气
对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。
旋风分离器采用整体立式结构,体积小,重量轻。旋风管立式布置,由两水平隔板分成3个独立的工作室,为便于内部检查,每个工作室单独设置1个人孔或手孔。旋风分离器包括壳体部分、进气、出气、放空、分离单元、人孔、手孔、人工清灰和阀控排尘口、支腿等结构。 [1]
编辑
整体结构的改变
在旋风除尘器内部的旋转气流中,颗粒物受离心力作用作径向向外(朝向筒锥壁)运动,运动速度可由颗粒物所受的离心力及气流阻力的运动方程求得。显然旋风除尘器分离的目的就是使颗粒物尽快到达筒锥体边壁。因此,延长颗粒物在旋风除尘器中的运动时间,在气流作用下提高颗粒物与筒锥体壁相撞的概率,可以提高旋风除尘器除尘效率。
Y.Zhu(2001年)提出在普通旋风除尘器中增加一个筒壁,这一筒壁将旋风除尘设备内部空间划分为两个环形区域,同时,排气芯管被移到了下方,排气芯管中的上升气流也变成了下降气流,颗粒物在内外两个外环形区域内都得到了分离,事实上,这种旋风分离器相当于将两个旋风子合到了一起。从理论上讲,这种改进提高了颗粒物被收集的概率。Y.Zhu型旋风除尘器试验结果(气流流量范围为 10L/min~40L/min,对粒径范围为0.6μm~8.8μm颗粒物)与Stairmand旋风除尘器的进行了比较有:改进后的旋风除尘器,除尘效率得到提高,并且随气流流量的增大而增大;同时,对于相同无因次尺寸的旋风除尘器来说,前者的阻力也小于后者。Y.Zhu考虑各方面因素给出相应优化综合指标得出改进旋风除尘器性能优于传统的旋风除尘器。这种改动后的旋风除尘器较原有传统旋风除尘器结构稍为复杂。
在原有旋风除尘器结构上增加附加件
实际应用中的系统都比较庞大,采用新的旋风除尘器替代原有旋风除尘器,势必导致工程量和成本比较大。基于这一想法,很多研究者寻找不改变原有旋风除尘器结构,而通过增加附加部件为提高旋风性能。
由于旋风除尘器对微细颗粒物效率较低,尤其对PM10(粉尘粒径小于10μm的颗粒物)的除尘效率随着颗粒直径减小逐渐降低。也就是说,在旋风除尘器的运行过程中,绝大部分微细粉尘穿透了分离区域,导致对微细粉尘效率下降。A.Plomp等(1996年)提出了加装二次分离附件的一种旋风除尘器,见图3示意图。二次分离附件设置在旋风除尘器本体顶部,称之为POC(post cyclone)。
POC二次分离作用是利用排气芯管强旋流作用使微细粉尘受离心力作用向边壁运动,并与挡板相撞后,通过缝隙1掉入挡板下部的壳体中,另一部分即使在一开始没有与边壁相撞,但由于始终受到离心力的作用,在到达POC顶部时,其中也有很大一部分通过缝隙2处而进入挡板与壳体之间的空间,随后由于 POC中主气流的约10%通过缝隙形成渗透流,在渗透推动下,颗粒物被吹出壳体。
研究结果得知,在特定结构尺寸和运行条件下总效率比改进前提高了2%~20%;POC的阻力约为旋风除尘器本体10%,该阻力与渗透气流量无关(在所给参数范围内);对于直径较大的旋风除尘器,尤其在原旋风除尘器性能不是很高的情况下,加装POC的办法对于提高旋风分离的性能很有效。POC装置对3μm以上粉尘分离很有效,对3μm以下的粉尘效果不显著;渗透流量及POC装置的离心力对POC的性能影响显著;采用穿孔 (较小)内挡板可提高分离效率。
局部结构改进
许多研究者通过旋风除尘器内部气流流动研究认为:旋风除尘器气流速度分布在径向上呈轴不对称或出现偏心。尤其在锥体下部靠近排尘口附近,有明显的"偏心";排气管下口附近,径向气流速度较大,有"短路"现象。气流偏心或短路不利于粉尘分离。
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。
设备管口提供配对的法兰、螺栓、垫片等。
通常,气体入口设计分三种形式:
a) 上部进气
b) 中部进气
c) 下部进气
对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。
旋风分离器采用整体立式结构,体积小,重量轻。旋风管立式布置,由两水平隔板分成3个独立的工作室,为便于内部检查,每个工作室单独设置1个人孔或手孔。旋风分离器包括壳体部分、进气、出气、放空、分离单元、人孔、手孔、人工清灰和阀控排尘口、支腿等结构。 [1]
编辑
整体结构的改变
在旋风除尘器内部的旋转气流中,颗粒物受离心力作用作径向向外(朝向筒锥壁)运动,运动速度可由颗粒物所受的离心力及气流阻力的运动方程求得。显然旋风除尘器分离的目的就是使颗粒物尽快到达筒锥体边壁。因此,延长颗粒物在旋风除尘器中的运动时间,在气流作用下提高颗粒物与筒锥体壁相撞的概率,可以提高旋风除尘器除尘效率。
Y.Zhu(2001年)提出在普通旋风除尘器中增加一个筒壁,这一筒壁将旋风除尘设备内部空间划分为两个环形区域,同时,排气芯管被移到了下方,排气芯管中的上升气流也变成了下降气流,颗粒物在内外两个外环形区域内都得到了分离,事实上,这种旋风分离器相当于将两个旋风子合到了一起。从理论上讲,这种改进提高了颗粒物被收集的概率。Y.Zhu型旋风除尘器试验结果(气流流量范围为 10L/min~40L/min,对粒径范围为0.6μm~8.8μm颗粒物)与Stairmand旋风除尘器的进行了比较有:改进后的旋风除尘器,除尘效率得到提高,并且随气流流量的增大而增大;同时,对于相同无因次尺寸的旋风除尘器来说,前者的阻力也小于后者。Y.Zhu考虑各方面因素给出相应优化综合指标得出改进旋风除尘器性能优于传统的旋风除尘器。这种改动后的旋风除尘器较原有传统旋风除尘器结构稍为复杂。
在原有旋风除尘器结构上增加附加件
实际应用中的系统都比较庞大,采用新的旋风除尘器替代原有旋风除尘器,势必导致工程量和成本比较大。基于这一想法,很多研究者寻找不改变原有旋风除尘器结构,而通过增加附加部件为提高旋风性能。
由于旋风除尘器对微细颗粒物效率较低,尤其对PM10(粉尘粒径小于10μm的颗粒物)的除尘效率随着颗粒直径减小逐渐降低。也就是说,在旋风除尘器的运行过程中,绝大部分微细粉尘穿透了分离区域,导致对微细粉尘效率下降。A.Plomp等(1996年)提出了加装二次分离附件的一种旋风除尘器,见图3示意图。二次分离附件设置在旋风除尘器本体顶部,称之为POC(post cyclone)。
POC二次分离作用是利用排气芯管强旋流作用使微细粉尘受离心力作用向边壁运动,并与挡板相撞后,通过缝隙1掉入挡板下部的壳体中,另一部分即使在一开始没有与边壁相撞,但由于始终受到离心力的作用,在到达POC顶部时,其中也有很大一部分通过缝隙2处而进入挡板与壳体之间的空间,随后由于 POC中主气流的约10%通过缝隙形成渗透流,在渗透推动下,颗粒物被吹出壳体。
研究结果得知,在特定结构尺寸和运行条件下总效率比改进前提高了2%~20%;POC的阻力约为旋风除尘器本体10%,该阻力与渗透气流量无关(在所给参数范围内);对于直径较大的旋风除尘器,尤其在原旋风除尘器性能不是很高的情况下,加装POC的办法对于提高旋风分离的性能很有效。POC装置对3μm以上粉尘分离很有效,对3μm以下的粉尘效果不显著;渗透流量及POC装置的离心力对POC的性能影响显著;采用穿孔 (较小)内挡板可提高分离效率。
局部结构改进
许多研究者通过旋风除尘器内部气流流动研究认为:旋风除尘器气流速度分布在径向上呈轴不对称或出现偏心。尤其在锥体下部靠近排尘口附近,有明显的"偏心";排气管下口附近,径向气流速度较大,有"短路"现象。气流偏心或短路不利于粉尘分离。
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。
设备管口提供配对的法兰、螺栓、垫片等。
通常,气体入口设计分三种形式:
a) 上部进气
b) 中部进气
c) 下部进气
对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。
旋风分离器采用整体立式结构,体积小,重量轻。旋风管立式布置,由两水平隔板分成3个独立的工作室,为便于内部检查,每个工作室单独设置1个人孔或手孔。旋风分离器包括壳体部分、进气、出气、放空、分离单元、人孔、手孔、人工清灰和阀控排尘口、支腿等结构。 [1]
编辑
整体结构的改变
在旋风除尘器内部的旋转气流中,颗粒物受离心力作用作径向向外(朝向筒锥壁)运动,运动速度可由颗粒物所受的离心力及气流阻力的运动方程求得。显然旋风除尘器分离的目的就是使颗粒物尽快到达筒锥体边壁。因此,延长颗粒物在旋风除尘器中的运动时间,在气流作用下提高颗粒物与筒锥体壁相撞的概率,可以提高旋风除尘器除尘效率。
Y.Zhu(2001年)提出在普通旋风除尘器中增加一个筒壁,这一筒壁将旋风除尘设备内部空间划分为两个环形区域,同时,排气芯管被移到了下方,排气芯管中的上升气流也变成了下降气流,颗粒物在内外两个外环形区域内都得到了分离,事实上,这种旋风分离器相当于将两个旋风子合到了一起。从理论上讲,这种改进提高了颗粒物被收集的概率。Y.Zhu型旋风除尘器试验结果(气流流量范围为 10L/min~40L/min,对粒径范围为0.6μm~8.8μm颗粒物)与Stairmand旋风除尘器的进行了比较有:改进后的旋风除尘器,除尘效率得到提高,并且随气流流量的增大而增大;同时,对于相同无因次尺寸的旋风除尘器来说,前者的阻力也小于后者。Y.Zhu考虑各方面因素给出相应优化综合指标得出改进旋风除尘器性能优于传统的旋风除尘器。这种改动后的旋风除尘器较原有传统旋风除尘器结构稍为复杂。
在原有旋风除尘器结构上增加附加件
实际应用中的系统都比较庞大,采用新的旋风除尘器替代原有旋风除尘器,势必导致工程量和成本比较大。基于这一想法,很多研究者寻找不改变原有旋风除尘器结构,而通过增加附加部件为提高旋风性能。
由于旋风除尘器对微细颗粒物效率较低,尤其对PM10(粉尘粒径小于10μm的颗粒物)的除尘效率随着颗粒直径减小逐渐降低。也就是说,在旋风除尘器的运行过程中,绝大部分微细粉尘穿透了分离区域,导致对微细粉尘效率下降。A.Plomp等(1996年)提出了加装二次分离附件的一种旋风除尘器,见图3示意图。二次分离附件设置在旋风除尘器本体顶部,称之为POC(post cyclone)。
POC二次分离作用是利用排气芯管强旋流作用使微细粉尘受离心力作用向边壁运动,并与挡板相撞后,通过缝隙1掉入挡板下部的壳体中,另一部分即使在一开始没有与边壁相撞,但由于始终受到离心力的作用,在到达POC顶部时,其中也有很大一部分通过缝隙2处而进入挡板与壳体之间的空间,随后由于 POC中主气流的约10%通过缝隙形成渗透流,在渗透推动下,颗粒物被吹出壳体。
研究结果得知,在特定结构尺寸和运行条件下总效率比改进前提高了2%~20%;POC的阻力约为旋风除尘器本体10%,该阻力与渗透气流量无关(在所给参数范围内);对于直径较大的旋风除尘器,尤其在原旋风除尘器性能不是很高的情况下,加装POC的办法对于提高旋风分离的性能很有效。POC装置对3μm以上粉尘分离很有效,对3μm以下的粉尘效果不显著;渗透流量及POC装置的离心力对POC的性能影响显著;采用穿孔 (较小)内挡板可提高分离效率。
局部结构改进
许多研究者通过旋风除尘器内部气流流动研究认为:旋风除尘器气流速度分布在径向上呈轴不对称或出现偏心。尤其在锥体下部靠近排尘口附近,有明显的"偏心";排气管下口附近,径向气流速度较大,有"短路"现象。气流偏心或短路不利于粉尘分离。