其他品牌 品牌
经销商厂商性质
北京市所在地
拉普特蓄电池NP12-7 12V7AH 参数及规格说明
¥90拉普特蓄电池NP12-12 12V12AH 尺寸技术参数
¥90拉普特蓄电池NP12-17 12V17AH 更换安装尺寸
¥90拉普特蓄电池NP12-20 12V20AH 使用要求安装
¥90拉普特蓄电池NP12-24 12V24AH 技术型号报价
¥90拉普特蓄电池NP12-26 12V26AH 尺寸及安装
¥90拉普特蓄电池NP12-33 阀控式12V33AH 价格
¥90拉普特蓄电池NP12-38 12V38AH 型号及尺寸
¥90拉普特蓄电池NP12-40 12V40AH 报价及参数
¥90拉普特蓄电池NP12-55 12V55AH 价格及参数
¥90拉普特蓄电池NP12-65 12V65AH 参数及规格
¥90拉普特蓄电池NP12-100 12V100AH尺寸及价格
¥90Narada南都蓄电池6-GFM-38 12V38AH储能系列
Narada南都蓄电池6-GFM-38 12V38AH储能系列
浙江南都电源动力股份有限公司(代码:300068)是国家。公司创立于1994年9月,2010年4月在A股创业板上市。公司主营业务为通信后备电源、动力电源、储能电源、系统集成及相关产品的研发、制造、销售和服务;主导产品为阀控密封蓄电池、锂离子电池、燃料电池及相关材料。产品广泛应用于通信、电力、铁路等基础性产业;太阳能、风能、智能电网、电动汽车、储能电站等战略性新兴产业;电动自行车电池、通讯终端应用电池等民生产业。经过十余年的发展,公司已成为国内外电池行业的,公司品牌“NARADA"已成为和享誉的。
公司拥有的技术创新能力。设有南都电源研究院、国家认可实验室、博士后科研工作站和杭州市院士专家工作站,配备了的科研试验和综合测试设备。拥有以院士为首,国内外教授、专家组成的具有丰富理论与实践经验的研发团队。公司迄今已提出百余项自主知识产权申请,其中发明几十项,已获得57项授权。在储能应用领域,拥有大型储能、离网储能、分布式储能的系统设计及集成技术;在动力应用领域,拥有电动汽车、电动叉车、电动自行车等车用超级电池、锂离子电池技术;在通信应用领域,拥有IDC等交换机房用、基站用、UPS用等阀控电池、锂电池、燃料电池技术,其中适用于高温环境下的环保节能电池为,具有巨大的经济及生态效益;在新型材料方面,拥有锂离子电池正负极材料、阀控电池正负极材料、电解质材料等多项核心技术。
南都电池浮充电压不均的影响因素有哪些?
电池在长期浮充运行中,出现浮充压差大的原因主要有以下几点因素:
1、停电频繁,充电不足 目前随着电信网络逐渐趋向于小型化,分布由原先的集中型转变为分散型。很多网点都分布于远离市中心的郊区和偏远的农村。由于这些地区供电不是很正常,特别是农忙季节,停电频次更是频繁,往往一周要停2~4次,停电时间也从1h~24h不等,甚至会停上好几天。频繁的停电对于电池来讲就是小电流浅度放电循环,有时也会出现小电流深度放电循环甚至是过放电。电池在放电后往往还没有及时充足电就又开始进行放电,所以在这种使用条件下,电池的部分活性物质就会失效,出现电池落后现象,进而导致浮充压差大。
2、环境温度影响
目前接入网电池安装的地点多是租的民房,室内一般没有空调,只有风扇进行换气。在西部地区巡检时,绝大部分网点都在偏远的农村,环境条件是气候干燥、温差大,在干燥炎热的夏天,电池在浮充时析气比较严重,电池有一定的失水现象,电池酸液饱和度下降,复合效率提高。电池浮充电压会出现压差现象。
3、落后电池影响 电信部门定义落后电池是指浮充状态下,浮充电压低于2.18V的的电池。造成落后电池的原因目前主要有以下几种: 电池内部微短路造成,造成电池微短路的可能因素是铅渣短路、隔板枝晶短路、隔板破损短路。 该现象可以在电池开路静置30min后测量开路电压进行判定,如果电池开路电压低于2.10V,极有可能是微短路造成。 电解液杂质含量高,特别是Fe离子、Mn离子和有机物Cl离子会造成电池容量不足,产生落 后现象。 负极硫酸盐化造成电池落后。当电池深度放电后长时间未能充电或过放电时,电池负极易产生 硫酸盐化,这时产生的硫酸盐为难以转化的硫酸盐。判定电池是否出现硫酸盐化可以看电池放电时电压下降很快而充电时电压上升很快,这个是硫酸盐化的一个表征。 电池正极失效造成落后现象。正极失效的成因主要是不正常的循环方式导致正极失效,从而容 量衰减较大,导致落后。
4、不同类型电池混用及新旧电池混用 不同类型电池指同一厂家系列但容量不同或同一容量但厂家不同的电池,但混在一起使用时由于设计参数不同,会导致电池充电放电程度的差异、酸液饱和度的差异、复合效率的差异、开闭阀压力差异,终表现的是压差较大。而且不同容量的电池混用会导致容量低的电池过充过放、容量高的电池充电不足。新旧电池混用的主要缺陷是电池的酸液饱和度不一样,新电池的酸液饱和度大,浮充时电压可能偏高,但使用一段时间后会趋向于平衡,新旧电池的生产日期不要超过半年。
5、充电设备设置的浮充电压偏低 按照2.23V/单体(20℃)浮充电压设置,48V系列的电池组浮充总电压为53.52V。现场巡检时发现设备关于浮充电压的设置不是很统一,大部分设置在53.2V~53.4V之间,对于夏天来讲比较合适,但冬季就偏低很多,容易造成电池充电不足,长期使用就会导致某些电池落后,造成浮充不均。
6、生产控制 电池浮充电压的均一性与生产过程中各工序和原材料均一性控制有很大的关系,如隔板厚度和孔率,极板厚度,化成后极板孔率、PbO2含量、装配压力、杂质含量等都有很大关系。每个工序或原材料的不均一性都会终集中到一起,反映在浮充不均一上。因此生产过程控制是解决浮充压差的一个非常关键的因素。
7、充放电制度 合理的充放电制度可以有效的减缓浮充电压不均的问题,其中定期的进行一次*放电是一种比较有效的方式。是一年进行一次,具体放电方法可以采用如下的放电方式:
模式 控制条件 限定条件 备注 控制电流 控制电压 DCH 恒流0.1C10A 1.8V/单格 CHA 恒流0.25 C10A 2.35V/单格 充电电流可以根据设备的情况而设置,可以在0.15 C10~ 0.25 C10 CHA 限流0.25 C10A 恒压2.35V/单格 24h
型号 | 电压(V) | 容量(AH) | 重量(KG) | 外型尺寸(mm) | |||
长 | 宽 | 高 | 总高 | ||||
6-FM-7 | 12 | 7 | 2.7 | 151 | 65 | 94 | 101 |
6-FM-17 | 12 | 17 | 5.6 | 180 | 77 | 167 | 167 |
6-FM-24 | 12 | 24 | 7.5 | 165 | 125 | 175 | 180 |
6-FM-38 | 12 | 38 | 14.5 | 197 | 165 | 175 | 180 |
6-FM-65 | 12 | 65 | 21 | 350 | 166 | 175 | 175 |
6-FM-100 | 12 | 100 | 30 | 407 | 173 | 210 | 236 |
6-FM-150 | 12 | 150 | 42 | 483 | 170 | 239 | 240 |
6-FM-200 | 12 | 200 | 55 | 522 | 240 | 219 | 244 |
南都铅酸蓄电池好坏的综合测试方法有哪些?
通过以上比较可知,目前所常用的几种VRLA蓄电池的测试方法中单独的任何一种都难以准确、高效的确定VRLA蓄电池的容量与好坏,只有针对不同的维护对象根据目前电信的维护模式和维护手段,综合利用VRLA蓄电池的几种测试方法,才能保证维护质量,确保安全供电。
(1)对于交换端局及以上综合局的直流供电系统的主电池组,日常可以通过监控系统监测电池组的端电压;周期性(每季或半年)观测、分析市电停电时或人为设低整流系统的系统输出电压时的电池组短时充、放电单体电池的端电压特征曲线;人工周期巡检时(每月),应对电池组进行必要的清洁、维护,测量单体电池的电导值并与电池组的参考电导值和历史测量的电导值进行分析比较;每年可以用快速电池容量测试仪预测电池组容量;每两年应按《电信电源维护规程》要求做一次离线电池组容量试验并修正快速容量测试的结果。
(2)UPS等系统的高电压电池组,因为单体数量多、电压高,一般监控系统没有对电池组单体端电压进行监测,因此在人工周期巡检时(每月),应对电池组进行必要的清洁、维护,测量单体电池的电导值和端电压并与电池组的参考电导值和历史测量值进行分析、比较;有条件的每年还可以对电池组进行快速容量试验或核对性容量试验。
(3)农话、接入网点的电池组,由于网点多而分散,维护人员少,为节省投资,监控系统一般也没有对电池组单体端电压进行监测,因此很难保证常规维护。对此,可以通过人工周期巡检(每月或季)对电池组进行必要的清洁、维护,测量单体电池的电导值和端电压并与电池组的参考电导值和历史测量值进行分析、比较;有条件的还可以每年(或两年)对电池组进行一次快速容量试验。
南都蓄电池-阀控式免维护铅酸蓄电池充放电试验规程
1 主题内容与适用范围
1.1 本通则规定了阀控式免维护铅酸蓄电池的充放电试验内容、要求和周期。
1.2 本通则适用于现场维护人员对蓄电池的充放电试验。
1.3 下列人员应通晓本规程 :生产副总、生产部门经理(主任)、副经理(副主任、经理助理)、专职技术人员。 生产人员:值长、运行值班员、维护班人员。
2 阀控式免维护铅酸蓄电池日常要求
2.1 蓄电池应每半月进行一次、检查并记录整组电压和各个标示电池电压。
2.2 阀控式免维护铅酸蓄电池核对充放电周期 新安装后的阀控式免维护铅酸蓄电池组,应进行全核对性充放电试验,以后每隔2年进行一次核对性充放电试验,运行了6年以后的阀控蓄电池,应每年做一次核对性充放电试验。
3 阀控式免维护铅酸蓄电池充放电项目
3.1 检查电池表面是否完好无鼓胀变形,电池连接的接触良好,极柱的连接表面无腐蚀。
3.2 准备好充放电工器具,记录表格及开工资料。
3.3 确定电池充放电时间和要求放出容量预测值。充足电后进入放电,放电10小时单体终止电压1.90V,低不能低于1.80V。
3.4 在充放电过程中每隔2小时记录一次单体电压,总电压,充放电电流。并检查电池发热,充电装置运行情况。
3.5 充放电工作结束后应进行数据分析,对电池的电压有不正常下降,容量不足的电池应单独进行充电或更换处理。
4 阀控式免维护铅酸蓄电池充放电技术要求.
4.1 蓄电池应处在清洁、阴凉及干燥的远离热源和可能产生火花的地方,室温应保持在16℃~32℃的范围内。
4.2 蓄电池室内应通风良好,同时排出的气流不得立即回到电池室内,以防室内的氢气含量超过4%而有爆炸的危险。
4.3 蓄电池不能过电流或过电压充电,亦不能过放电,每次放电完后,应及时充电,需充电的时间在10小时以上。
4.4 阀控式铅酸蓄电池对充电设备及温度等外部环境因素较为敏感。要求充电机要有较小的纹波系数,并对电池有温度补偿功能。电池的充电电压应随着温度的上升而下降,一般每升高一度,充电电压下降2~4mV。
4.5 检验电池充足电方办法:电池系统恒压充电到后期,电流减少并趋向稳定值,充电电流连续三小时保持稳定,即表示电池系统已充足电。
4.6 新装电池系统初始容量达到额定值的95%容量时即为合格。
5 阀控式免维护铅酸蓄电池充放电方法和步骤
5.1 充电
5.1.1 检查电池是否完好无损,记录电池的编号。在具备充电情况下开启充电装置。
5.1.2 戴好绝缘手套,准备好有绝缘防护的工具,防止工作中遭受电击。
5.1.3 使用GF型阀控式免维护铅酸蓄电池,充电时宜采用恒压限流的充电方法进行充电。
5.1.4 充电时,投充电柜三相交流电源,按下充电柜1~3个模块按钮开关,启动充电柜1~3个模块,装置进入工作状态。
5.1.5 充电柜系统根据蓄电池的工作状况,自动运行充电程序,控制充电器对蓄电池进行均充或浮充,使蓄电池始终运行在状态。
5.1.6 自动充电程序如下:开机时,系统控制充电器处于浮充状态,同时进行计时并监测蓄电池电流。当连续浮充时间总计达到设置时间或蓄电池电流大于等于5%C10Ah(A)时,系统自动控制充电器转入均充状态。当蓄电池电流小于5%C10Ah(A)时,开始计时,到达设置时间后,系统控制充电器再转入浮充状态。:
5.1.7 充电柜系统运行自动充电程序期间,也可进行手动设置均充或浮充状态,设置完后系统继续运行自动充电程序。
5.1.8 可根据蓄电池容量在系统中对蓄电池稳流值进行设定,由于调节范围限定,在设定此值时应遵循以下公式: I输出稳流值=I设定稳流值
5.1.9 在环境温度为25℃的条件下,2V电池充电为2.27V/只。充电开始时电流应限制在0.25×C10(A)的范围内。
5.1.10 充电前对蓄电池用万用表实际记录一次,测量出实际与监测电压差值,以后每隔1~2小时应测量和记录。
5.1.11 电池在充电过程中,如发现个别电池,端电压差大于+0.10伏,应进行充电使全组电池均衡一致的均衡充电。
5.1.12 均衡充电采取低压恒压法,充电电压为2.35~2.40V/只,要求每只电池充足电且均衡一致。如果均衡充电后,还有个别电池不能达到正常时,则应单独充电使之正常后,方可入组与电池组一同使用。!
5.1.13 当整组电池充电结束后,充电装置可转入正常运行。
5.2 放电
5.2.1 放电采用电阻恒流法。
5.2.2 接好外部放电电路,配置适当的监视表计及放电电阻。
5.2.3 放电电流不超过10小时率的电流。即放电电流控制在20A。放电量应为额定容量的80%以上。 5.2.4 放电时,每隔1~2小时应测量和记录放电的电流、总电压、每个电池的电压、温度,单个电池电压不得低于1.80伏。
5.2.5 电池过多,可只测标示电池,但在整个放电过程中,应全测2~3次。对电压下降较快的电池要专项记录。
5.2.6 放电时如发现电池的电压有不正常下降,应查明情况,进行处理,容量很低的要进行更换。
5.2.7 放电结束后即进行充电,不能搁置,充电方法按上述充电方式进行,直至充足电后结束,蓄电池组可转入正常运行。