其他品牌 品牌
代理商厂商性质
广州市所在地
Q热IgG(一、二阶段)免疫荧光玻片试剂盒
Coxiella burnetii IgG IFA Kit
广州健仑生物科技有限公司
主要用途:用于检测人血清中的Q热IgG(一、二阶段)
产品规格:12 孔/张,10 张/盒
包括包柔氏螺旋体菌、布鲁氏菌、贝纳特氏立克次体、土伦杆菌、钩端螺旋体、新型立克次体、恙虫病、立克次体、果氏巴贝西虫、马焦虫、牛焦虫、利什曼虫、新包虫、弓形虫、猫流感病毒、猫冠状病毒、猫疱疹病毒、犬瘟病毒、犬细小病毒等病原微生物的 IFA、MIF、ELISA试剂。
Q热IgG(一、二阶段)免疫荧光玻片试剂盒
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、化妆品检测、食品安全检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
欢迎咨询
欢迎咨询2042552662
二维码扫一扫
【公司名称】 广州健仑生物科技有限公司
【】 杨永汉
【】
【腾讯 】 2042552662
【公司地址】 广州清华科技园创新基地番禺石楼镇创启路63号二期2幢101-3室
【企业文化】
“当然,进一步的研究将需要确定PPARγ激活药物对肺癌治疗的疗效,”他补充说。
红血细胞、细菌、酵母细胞和抗原抗体。当17世纪的科学家*次在光学显微镜下研究这些活的生物体时,他们看到了一个新的世界。微生物学诞生了,从此,光学显微镜成为研究生命科学的工具箱中zui重要的工具之一。
但在很长一段时间,光学显微镜无法突破一个物理局限,即所谓的阿贝衍射极限——德国物理学家恩斯特·阿贝于1873年提出的公式证明,受光的波长等因素影响,显微镜的分辨率是有限的。在20世纪的大部分时间,科学家们都认为,光学显微镜永远无法看到小于光的波长一半的物体,也就是说,分辨率超不过0.2微米。虽然某些细胞的细胞器如线粒体的轮廓在光学显微镜下清晰可见,但它难以分辨更小的物体,这类似于能够看到一个城市的建筑,却不知道居民们如何生活。要充分了解细胞的功能,就需要具备跟踪单个分子活动的能力。
阿贝衍射极限仍然成立,但美国科学家埃里克·贝齐格、威廉·莫纳和德国科学家斯特凡·黑尔借助荧光分子的帮助,巧妙地绕过了经典光学的这一“束缚”,使光学显微镜发展到了一个新的层次——纳米显微镜。现在,科学家们可以监控细胞内单个分子之间的相互作用,观察与疾病相关的蛋白质如何聚集,并在纳米水平上跟踪细胞分裂过程。三位科学家也因在超分辨率荧光显微技术领域取得的成就而获得2014年诺贝尔化学奖殊荣。
"Of course, further research will need to determine the efficacy of PPARγ-activating drugs in the treatment of lung cancer," he added.
Red blood cells, bacteria, yeast cells and antigen antibodies. When 17th-century scientists first studied these living organisms under a light microscope, they saw a new world. Microbiology was born, and optical microscopy became one of the most important tools in the life science toolkit ever since.
But for a long time, the optical microscope can not break through a physical limitation called the Abbe diffraction limit - the formula proposed by the German physicist Ernst Abbe in 1873 proves that the wavelength affected by light and other factors, the microscope The resolution is limited. For most of the 20th century, scientists agreed that optical microscopes could never see objects less than half the wavelength of light, that is, resolutions beyond 0.2 microns. Although the outline of some cells' organelles, such as mitochondria, is clearly visible under a light microscope, it is difficult to distinguish smaller objects, analogous to being able to see a city's buildings without knowing how the inhabitants live. To fully understand the function of cells, you need to have the ability to track the activities of a single molecule.
Abbe diffraction limit still holds, but American scientists Eric Bezig, William Mona and German scientist Stefan Hale skillfully circumvented the "bondage" of classical optics with the help of fluorescent molecules. , The optical microscope has developed to a new level - the nano-microscope. Now scientists can monitor the interactions between individual molecules in cells, see how disease-related proteins aggregate and track cell division at the nanoscale. The three scientists also won the 2014 Nobel Prize in Chemistry for their achievements in super-resolution fluorescence microscopy.