英国Ossila材料M261/PTB7-Th/PBDTTT-EFT/英国Ossila材料PCE10

英国Ossila材料M261/PTB7-Th/PBDTTT-EFT/英国Ossila材料PCE10

参考价: 面议

具体成交价以合同协议为准
2023-04-02 18:57:59
8701
产品属性
关闭
湖南远湘生物科技有限公司

湖南远湘生物科技有限公司

中级会员8
收藏

组合推荐相似产品

产品简介

英国Ossila材料M261/PTB7-Th/PBDTTT-EFT/英国Ossila材料PCE10
英国Ossila代理、厂家直接订货、原装正品、交期准时、洽谈!!!

详细介绍

只用于动物实验研究等

Batch details

Batch numberMWPDIStock info
M261> 40,0001.8-2.0In stock

英国Ossila材料M261/PTB7-Th/PBDTTT-EFT/英国Ossila材料PCE10

General Information

Full namePoly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]
SynonymsPCE10 / PBDTTT-EFT / PTB7-Th
Chemical formula(C49H57FO2S6)n
CAS number1469791-66-9
HOMO / LUMOHOMO = 5.24 eV, LUMO = 3.66 eV [1]
Opticalλmax = 720 nm; λedge = 785 nm; Eg (optical) = 1.58 eV
Classification / Family

Thienothiophene, Benzodithiophene, Heterocyclic five-membered ring, Organic semiconducting materials, Low band gap polymers, Organic Photovoltaics, Polymer Solar Cells

Applications

PCE10 (PTB7-Th, PBDTTT-EFT) is one of the new generation of OPV donor polymers that could deliver on the heralded 10/10 target of 10% efficiency and 10 years lifetime. Brand new to the Ossila catalogue, this material is already showing impressive potential with in excess of 9% efficiency reported in the literature and over 7% produced when using large area deposition processes in air with a standard architecture [1,2]. In our own labs we have achieved efficiencies of over 9%.

The advantages of PCE10 are that not only does the material lower HOMO/LUMO levels and increase the efficiencies compared to PTB7, but more significantly it is also far more stable. Early indications are that it can be handled under ambient conditions without issues, suggesting that we can look forward to measuring the long term lifetime of the devices.

PCE10 is one of the most exciting materials to have made it out of the labs in recent years and offers huge potential for more in depth research. We'll be working hard over the next few months to maximise efficiencies by optimising the device architecture, and we will provide further results as we do so. In the mean time, our current fabrication routine is below, and should you have any further questions or queries please contact us.

Usage Details

Reference Devices

Reference devices were made on batch M261 to assess the effect of PBDTTT-EFT:PC70BM active layer thickness on OPV efficiency with the below structure. These were fabricated under inert atmosphere (N2glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / PBDTTT-EFT:PC70BM (1:1.5) / Ca (5 nm) / Al (100 nm)

For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.

The PBDTTT-EFT:PC70BM solution was made in chlorobenzene at 35 mg/ml before being diluted with 3% diiodooctane (DIO) to promote the correct morphology.

Active layer thicknesses were achieved from spincasting the film at spin speeds of 2000, 2700, 3900 and 6000 rpm for 30s. Additionally, a methanol wash was performed for all devices to help remove the DIO additive. For each of these spin speeds a total of 2 substrates (3 in the case of 2700 rpm) was produced, each with 8 pixels and the data presented below represents a non-subjective (no human intervention) analysis of the best 75% of pixels by PCE (18 pixels for 2700 rpm condition, 12 pixels for each other).

Overall, the average efficiency of 8.30% PCE (9.01% maximum) was found from a 2700 rpm spin speed.

ote on effect of epoxy: Due to the very high solubility of the PBDTTT-EFT it was noted during fabrication that the film changed colour when in contact with the encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PBDTTT-EFT films before UV curing.

英国Ossila材料M261/PTB7-Th/PBDTTT-EFT/英国Ossila材料PCE10

Condensed Fabrication Routine

Substrates and cleaning

PEDOT:PSS

Active Layer Solution

Active layer test films

Active layers

Evaporation

Left in vacuum chamber overnight and evaporated with the below parameters.

Encapsulation

Measurements

 

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

References

Please note that Ossila has no formal connection to any of the authors or institutions in these references):

  1. Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure, S. Zhang et al., Macromolecules, 47, 4653-4659 (2014)
  2. Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain, L. Ye et al., Chemistry of Materials., 26, 3603-3605 (2014)
上一篇:灭菌盒和灭菌袋 不锈钢灭菌盒 自封性灭菌袋 下一篇:动物实验常用设备-湖南远湘生物科技有限公司
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :