MICRO-EPSILON ILD-1700-20压延激光传感器

MICRO-EPSILON ILD-1700-20压延激光传感器

参考价: 面议

具体成交价以合同协议为准
2024-10-26 12:21:43
402
属性:
产地类别:进口;
>
产品属性
产地类别
进口
关闭
上海壹侨国际贸易有限公司

上海壹侨国际贸易有限公司

初级会员7
收藏

组合推荐相似产品

产品简介

MICRO-EPSILON传感器、MICRO-EPSILON激光式传感器 DESCH、MICRO-EPSILON电涡流式传感器、MICRO-EPSILON电容式传感器、MICRO-EPSILON电感差动式传感器、MICRO-EPSILON ILD-1700-20压延激光传感器

详细介绍

 

 

MICRO-EPSILON ILD-1700-20压延激光传感器

MICRO-EPSILON ILD-1700-20压延激光传感器

 

soyer    PH-3N
crompton    E243-015-G-FA-**-IP
Rotoflux    B08-1651-01E
hydac    ETS386-2-150-000
balluff    BRGC5-WAP360-OP-G-0-K-03
Breco    32 TK5 K6/2.200-V-PAR
norelem    02020-306
lika    AST680/GY-10/S431

Schmitz    RS 24mm medium/24rs 15MO
Elektror airsystems gmbh    HRD 60 FU-105/4,0
Bosch Rexroth    R901212588 ABZMS-41-1X/0370/M2/DC-K24
SCHNEIDER    LTMEV40FM
FRONIUS Deutschland GmbH    34.0350.1836
PMA    P41-940724501121
ATOS    PFE-31028/1D
DL-SYSTEME    Messbereich : 0….minus 1 bar relativ = 4…20 mA Type : 231.99
hubner    POG 10 G D 1024I Ser.Nr.1709919
WEISS GmbH    TC 320T /10/F
STROMAG    EFL 16 T - 999-4A245 / Art.no: 505-00013
Trelleborg    12-3NBR70
hydac    EDS 3346-1-0016-000-F1
pall    MCY1001A010J
riegler    243.03
Funke    SLD1 222 004 02
ALSTOM    COMMUNICATIONCARDCANBUD, REFCAN2322 029.356.519
linde    Nr.: 3238 1338
suco    1-1-66-621-010
HARTING    19000005080
DOLD    ET1415.044 s-nr:0059274
Hawe    GR2-2-G24
kistler    6159AE
Turck    IM1-22EX-R,7541231
VOLKMANN GmbH    104688
norelem    07534-10X70
SCHMERSAL    AZ16-ST1-AS R ASI-SAW
KTR    KTR 250 35x47
Beta    530065
HIDRACAR    U002A18V1-AI
norelem    07161-04X10
Turck    WAS4-2/P00,Nr.8007097
ATOS    SP-COUR-230RC/10
Woerner    VPA-C.B/6/0/D/N/22/22/40/P 218609
Beck GmbH    6372
FRONIUS Deutschland GmbH    44.0350.2410
LEONI    PUR9N-3/8"BK/m
Resatron    RSG 10 C 13 + 12 - P - 3 - V1 - 2SS
parker    F11-010-HU-CV-K-000
SMW    12501
hydac    0160 MA 003 BN
Demag    FAW-1 220V-240V
dunkermotoren    D554 SNR88943.04075
Turck    BL67-2RFID-A Nr:6827225
Turck    WKC4.4T-10/,6625027
Honsberg    FLEX-(I+K) HD2KO1-015GM015 (220cst oil)
CONRAD    000235715 VOLTCRAFT NETZGERAET 12V/10A
Faster    VU112F112FM
Remo-hse    HMR-230/12/6k-5m-3A
Turck    B4151-0/11 Nr:6914526
Knick isolation    EK4
Gutekunst federn    D-207G
NUOVA    11193145
B&R    8V1180.001-2
Rexroth    3DREE16P-7X/200XYG24K31A1V R901226262
norelem    08927-05X06
PICKER    ALB110G10CCN9
Moflash    ABHF8-1437
Bohncke GmbH    595.2600.36
KEB    09F5B1B-2B0A
Beckhoff    IE1011
RUD    13-082 VRS-F M 20
parker    D31FBE02DC4NKW010 Nr.D31FBE02DC4NKW0
BTI    AMX5
KONUS    KKV-M12 620000120
Bender    IR125Y-4
ATOS    JPQ-222
Turck    HAS8141-0 NR6905406
Reinshagen    15.13.400 Nr:25040001
Rexroth    DBEME10-5X/200YG24K31M R900954708
Balluff GmbH    BTL5-E10-M0300-P-S32
igus    380.262.075.0, 10M
magneta    14.100.04.003
norelem    07534-10x16
Eaton Electric GmbH    PKZM4-XM65DE 101056
ATOS    DLOH-3A-U21
Brinkmann Pumps    TH1106B470-Z+300
Rexroth    MKD071B-061-KG0-KN
Beta    3630060
Beck    930.80.222511 16645-0006
Turck    SDPB-0800D-1007 Nr:6824409
HARTING    09 15 000 6223
hydac    EDS 344-2-250-000
DOLD    IP9077.39/001 3AC100V 0,1-20S S-nr:0055608
SIBA GmbH    5012406.12
binks    502382
igus    400.42.250.0, 10M
Beta    3630045
CONTROL TECHNEQUES    200*25/50
Black Box Deutschland GmbH    JPM405A-R2
AirCom    R13-02D
KUEBLER    6.134.012.850
Vahle    166242
Beckhoff Automation GmbH    KL1104
PILZ    Nr:777301
ALSTOM    700.000758
CONEC    163A11099X
Murrelektronik GmbH    Nr:4000-68123-0000000
MOOG    D661Z571C
SCHNEIDER    LRD1522
Tiefenbach GmbH    WK008K234
SIEMENS    6SL3995-6LX00-0AA0
B&R    3BP150.4
GMW    N11303
Stoeber    SEA5001
binks    192822
Turck    FXDP-IOM88-0001,NR.6825404
Mayr    8170038
Phoenix    3201932
Phoenix    3200454
Turck    BI30U-CP40-AP6X2 Nr.1625830
E+H    FTL260-1010
Phoenix    2708232
Murrelektronik    51301
Bohncke GmbH    595.2603.36
FAG    DRS3590
ATOS    LIDA-3
Martens    DF9648-2-2T-AO-0-00 220V
Funke    TPL00-L-12-11 NR:690573
Eaton Electric GmbH    PKE-XTU-4 121724
Rexroth    MSK101E-0300-NN-M1-AG2-NNNN
Bauer Gear Motor GmbH    DNF09SA4/SP Nr:188F345900 25120149-27
Baumer    OADM 20I4440/S14C
Murrelektronik GmbH    7000-14541-7960750
parker    OSP-P32-10001-01035
PREH    P20VR-200BAR
ATOS    DKER-1714-SP-667 24DC
ZENTRO-ELEKTRIK    TYP.8899-2BE NO.98228899100
Turck    BL20-E-8DI-24VDC-P,NR.6827227
SIEMENS    6SB2073-3EA00-0AA0
Murrelektronik    7000-41841-2360000
MAHR    5010100 N400/25/150
Murrelektronik GmbH    50600
Stoerk-Tronic    900210.004 ST710-KEJV.03 PTC 12-24V K1K2
schmalz    SCPi 15/25 NO RD M12-5 SO 10.02.02.03528
SMW    195896
Di-soric    200357 DCC 3.0 V 1.0 PSK-K-TSL
binks    250625
B&R    X20DI4371
EPCOS    B84113-C-B110
PFLITSCH    23254d20
hydac    HDA 4748-H-0400-000
Kral AG(pump)    DS3-2300.BAB.0005
BOSCH    R911305275 CSB01.1N-PB-ENS-NNN-NN-S-NN-FW
Turck    RKC4T-5-RSC4T/TXL Nr.6625730
FRONIUS Deutschland GmbH    4,075,137R
binks    250608
ATOS    DHZO-TE-071-L5
KOSTYRKA    5350.030.100/ID=30G7
schmalz    SAOB 110x55 NBR-60 G3/8-IG
Herkules-Resotec    REDIS-220-BP32 Nr.:91813
BARKSDALE    0303-031
KOBOLD    KSM-1005MP15R0
Murrelektronik GmbH    7000-12961-0000000
PILZ    PNOZ s9 C 24VDC 3 n/o t 1 n/c t ,Art-Nr.: 751109
SCHUNK    GWB80
Balluff GmbH    BES M12MG-PSC80F-S04G
binks    250609
Fuchs    KFSDIS1
Ahlborn Mess- und Regelungstechnik GmbH    SW5600WC4
Murr    9000-41034-0401000
Warmbier    8710.AM120.XL

 

 

 

EA    Art. EA300166
AXELENT    W322-220060
Beckhoff Automation GmbH    KL3458
KUHNKE    19.395.010 Compact-Zylinder
MENNEKES    Mennekes DELTA-BOX 92594
SCHNEIDER    LC1D126P7
ATOS    SCLI-25312
INTERNORMEN    01.NR.1000.32227.10VG.25G.25.B.V-SI
Euchner    CES-A-AEA-04B NR:072000
HARTING    19 30 024 1271
Beck    930.8722251
stotz    P65a-10-P
Gutekunst federn    D-173E
SERTO    SO-42521-12-1/2
HARTING    19200031422
Baumer    OADM 20I4440/S14C
ATOS    E-ME-AC-01F
SCHUNK    0307106 DRG 44-90-AS
ATOS    RZMO-TERS-PS-010/315
EMS    HF-250S
Euchner    CES-A-LNA-SC 077715
Turck    RSM-RKM579-7M,NR.6603754
ATOS    DLOH-3C-U21
HARTING    9990000110
Rexroth    R911298373
ODU Steckverbindungssysteme GmbH & Co. KG    181-134-000-301-000
SMW    12488
binks    250641
kistler    1631C2
Murr    4000-68000-1200000
mollet    DF24A1C5H1E74F2ER7ZM2VLR250W00U1X
binks    818823
PILZ    NO:751103
Murrelektronik GmbH    7000-29021-0000000.
HARTING    9300009901
GHR    C31-R1-L-N Nr:00C31R1LN
Turck    NI40-CP80-VP4X2/S97,1569522
SMW    12494
parker    3349111186
Turck    NI2-Q6,5-AP6-0,1-FS4.4X3/S304,1650048
HYFRA    TRK-110-EF-S, 0911060
Rexroth    DR10DP2 -4X/ 315YM
ENVIROFALK GMBH    Artikel-Nr.506119
Desoutter    D53-25 LINEAR ARM W/CLAMP 28.5-41;6158107020
SCHMERSAL    BNS 303-11Z-2211-3,0m ,Nr. 101203870
Hawe    P3YKA00CB
HBM    1-U2B/20KN
Drei Bond    4.290.00.090030.100B
HAUHINCO    6546854
IMAV    SV2-20N-C-0-24DG
JAQUET    T501.10(DC)
Knick    P27058H1(±60MV±10V )
hydac    0025 S 125W
Rexroth    HMS01.1N-W0036-A-07-NNNN
WIKA    Nr.40500141 Pos.6
HYFRA    H220-41300,281,N1
STAR    1605-104-31.140
igus    GSM-6065-40
ROSTA    N 1”–20 S 06 510 006
ATOS    RZMO-TERS-PS-010/315
vhale    168074
HARTING    9330062716
Turck    BMSWS 8151-8.5 Nr:6904722
ATEK Antriebstechnik GmbH    V 120 2:1 B0 -9.9- 600/NT/00 SN 06111393
Turck    WAKS4.5-5/S366 Nr:8019171
SICK    T4000-2DRNAC
BARKSDALE    SW2000/50Bar/1S,P/4-20mA,Part No.0428-258
Schneider Electric    XALK178F
SICK    M40E-034010RR0 Nr1 200 030
ATOS    AGRL-10
kistler    5015A1000
hydac    ETS 386-3-150-000+TFP100+S.S+ZBE06+ZBM300
GGB Heibronn Gmbh    BB121808 BP25
Murrelektronik    52503
Hawe    RHC 41 V
SMW    12501
B&R Industrie-Elektronik GmbH    X20DI9371
suco    0167-407-032-043
SCHUNK    0307109;DRG 80-90-AS
Mankenberg    DM462 4" * 10TX 80U-2,5GV(Ra <= 0.4 μm)
Turck    REP-DP 0002, Nr.6825354.
Phoenix    712314
Hilgendorf    QA1538SP
norelem    02010-08
ORTLIEB    T0065R060000G
KOBOLD    VKA-3106R0R15BY
HARTING    19 30 024 0272
ELABO    Allgemeine Prufnachweis
SMW    12457
EN motoren nijmegen bv    S 2316-22314
SCHMERSAL    M 6600-11-K-Y,101055341
Wachendorff Elektronik GmbH & Co. KG    WDG58A-1024-ABN-I24-S5R-E59
Honsberg    FLEX-(I+K) HD2KO1-020GM040 (220cst oil)
Knick isolation    46MK Opt.453
Turck    BL67-8DI-P,Nr.6827170
HARTING    19 30 016 1231
TEAFLEX    TEAFLEX M20X1,5 PLAS. CPKGM20
Hawe    TR 2-2
InterApp    ES2.P01H
Vahle GmbH & Co. KG    KST 2/40 PE ST 0168138
Tesa    04224-00126-00 Kautschukmasse WEISS L?nge/m: 66,00 Breite/m
Kroeplin GmbH    G105-K
SIEMENS    C73451-A430-D80
KUEBLER    8.3700.1327.0600
HYDROKOMP    KM-3-N002
Druck    PTX5072-TA-A2-CB-HO-PA 0-100MBAR
heidenhain    Id.Nr.310573-03
Eltako    1386-1393706
Hawe    SEH 2-3/50 FP-G 24
lika    AST680/GY-10/S431
Rosenberg    DD106-35-4 DA1 KS 0,68 m
Knick isolation    P27000H1-S001
SMW    12499
Turck    WAK3-2,4-SSP3/S90 Nr:8040015
Hawe    P6M-PAB4
Turck    BL67-PG-EN-IP Nr.6827246
cembre    BF-M4
Bopp & Reuther    3-44-23810-500/05741 MID-MDS-T-CA-20-20-C-3A(78001791)
Mahle    PI3108PS10
SIEMENS    BD2A-3-400-SB-1
KEB    09F5B1B-2B0A
Turck    FCS-G1/2A4P-VRX/230VAC Nr.6870094
ATOS    DLHZO-TE-040-L71-40
hydac    DR08P-01-C-N-180V
FRONIUS Deutschland GmbH    34.0350.1836
Faster    VU112F112FM
ELETTA    A2-FA50,120-240L/min
MOOG GmbH    D633-308B
Baumer    OHDM 16P5012/S14
Turck    FCS-G1/2A4P-AP8X-H1141,6870092
norelem    06460-2102X15
Turck    BL20-P3T-SBB Nr:6827036
suco    0166-40904-1-036 oberer SP 15bar
Rittal    3286410
Eaton Electric GmbH    DILM32-XHI22 277377
SICK    IM12-02BPS-ZC1
Di-soric    IR 35 PSOK-IBS
LEONI    A1-A3_C07009-00-055
Turck    FCS-GL1/2A4P-VRX/24VDC Nr:6870097
Turck    Nr.6625551 PKG3M-5/TXL
HARTING    19200031440
IHG    BB1209DU
Turck    WAS4-2/P00,Nr.8007097
HAHN+KOLB    69341035
ATOS    ARGL-10
kistler    4577A50C1
Beta    7280022
Rexroth    R911297425 HMV01.1E-W0120-A-07-NNNN
Staubli    13-084 ,RMI200.30
binks    250625
hydac    EDS3446-2-0250-000+ZBE06-05
hydac    KBK167/G mit Gummistue
SCHNEIDER    XMLG400D21
Contrinex    DW-AD-623-03
heidenhain    337147-01
ATOS    RZGA-A-033/80/PA-GK/7
Honsberg    10368303 OMNI-P006RK015S G3/8
AXELENT    D10-XXX150A
SICK    DFS60B-S4VA08192 NR.1058715
crompton    E243-015-G-FA-**-IP
Eltako    1386-1393706
OTT-JAKOB    9560053492
Desoutter    KIT HOUSING IN-LINE RIGHT+LEFT;6153982000
Murrelektronik    55037
norelem    08910 A10X12
ALLEN-BRADLEY    700-HA32A03-3-4
parker    P33MA16024N
Schrack Technik GmbH    MT321024
hydac    ETS386-2-150-000
norelem    07534-10X70
HSB    Beta 80-SOS-M 2550-834-1200-2SA-1
Phoenix    2981363
anybus    AB7001-C
Turck    BL20-E-GW-DP Nr:6827250
E+H    FTL260-1010
VEM    Klemmensockel 100Amp. Mit Messingbolzen 0112901
cembre    BF-M4
SCHUNK    T20018362Diamete12 K1129280 40090910
FRONIUS Deutschland GmbH    42.0510.0011
STRACK    13-083 Z5130-18
B&R    7TB718.9
KUEBLER    8.0010.40SO.0000
Jahns    MT-GM1-175/175-FEA;Fabr.Nr:157712
PMA    KSVC-101-00111-U00
Dopag    D38-5192-016-NI
binks    250612
Honsberg    NG-015GA2
cembre    BF-M5
Siba    5014206.12
FHF    iBL2 rot,118 811 12AX
SMW    12501
HARTING    09 34 006 2616
GUTEKUNST    VM-022E 0.7x3.50x1000
Di-soric    DCC 08 M 1.5 PSK-TSL/32
Bucher    C1NDY20-B-SVD-S100-L-H21-1-SVT250
Honsberg    switch head of MR
B&R Industrie-Elektronik GmbH    8V1090.00-2
berg    HKR60
Rexroth    HMS01.1N-W0054-A-07-NNNN
Martens    NG1000-2-0 input230VACoutput12~24
FEMA    Ex-VCM301
PMA Prozess- und Maschinen-Automation GmbH    KS50-102-1000E-000
Puls    QT20.481
Beck    930.8322251
HARTING    09 34 006 2616
Baumer Group (THALHEIM)    ITD 40 A 4 Y140 1024 H NI VR16 S12 11061316
Siemens-Loher    1PS5106-0BD90-4BB2-ZB15+L1Y(LOHER Nr. 2344872)
Rexroth    R900579943 4WRSE10V50-3X/G24K0/A1V
Stoz    KSW-1-35/120
SICK    M40S-034010AR0 Nr1 200 013
Vahle    143211
Turck    BL67-PG-EN-IP Nr.6827246
SAUTER    AVM234SF132-514MM 2/4/6 S/MM 24V/AC IP66 2500N 10W
Turck    RU100-M30-AP8X-H1141 Nr:18302
ATOS    LIDA-3
GANTER    GN820-230-M
Baumer    UNDK 30P1712/S14
GOUDSMIT    TG SP 02 0400
igus    GFM-0810-30
Knick isolation    46MK Opt.453
microSYST Systemelectronic GmbH    KPB1LE1-I8121462-002
Rexroth    0820 024 126
GEORGIN    TRE000A00/S N: 07.10.32088.0003
Meister    DKM-1/90-G1 Artikel-Nr.50XM1090XG25S
EA    KA110026 DN32
Honsberg    VM-032GR100
HYFRA    38622
Turck    WKC4.4T-10/,6625027
B&R Industrie-Elektronik GmbH    8V1045.00-2
Murrelektronik    55037
Vision & Control GmbH    RK613-G530/C/1-29-10
RIFOX - Hans Richter    2BX9221-0BD00
hydac    EDS3448-5-0400-000
HARTING    09 34 006 2716
FAMATEC    02.006.052
norelem    03130-08
keystone    39EE64
Schunk GmbH    0370103 PGN 125/1
Rexroth    4WRZE32W8-520-7X/6EG24N9K31/A1D3V? R900964255
Lenord+Bauer    Stecker 12-polig am kabel 5m
Conec    PD 2310- 10K 5A127UK
Fronius    4,100,260
binks    193362 instead of 250587
Turck    BL20-E-GW-DP Nr:6827250
Phoenix    3200580
BAUMER HUEBNER GMBH    POGS90 DN 2048 R
SCHNEIDER    SD315DN10B400
optek    Konverter C4221-EX-EN-D,PN:1200-3321-0009-00
SICK    DGS20-1F401024 Snr:7101106
Murrelektronik GmbH    27116
Turck    WAK3-2.1-SSP3/S90 Nr:8039139
MAEDLER    61203000
PAINTSYS    800131
GJC    5025000calibrated at 0.5, 1.0 & 2.0with USB Interface Option
binks    250626
PAULY    ET103/2000v /e2/y/i/fx/stA5/24VDC
Rexroth    4WRAE10E60-2X/G24K31/A1V R900954083
crompton    CI-E243-02V/16

 

 

 

1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化感应电流感应电流磁场磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定则判定);感阻碍原的变化--这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理顺如下:

楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

(1)阻碍原磁通的变化(原始表速);

(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

(3)使线圈面积有扩大或缩小的趋势;

(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:

(1)查明原磁场的方向及磁通量的变化情况;

(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用左手,“因动而电”用右手,因果关系不可混淆。

1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化感应电流感应电流磁场磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定则判定);感阻碍原的变化--这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理顺如下:

楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

(1)阻碍原磁通的变化(原始表速);

(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

(3)使线圈面积有扩大或缩小的趋势;

(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:

(1)查明原磁场的方向及磁通量的变化情况;

(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用左手,“因动而电”用右手,因果关系不可混淆。

1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化感应电流感应电流磁场磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定则判定);感阻碍原的变化--这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理顺如下:

楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

(1)阻碍原磁通的变化(原始表速);

(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

(3)使线圈面积有扩大或缩小的趋势;

(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:

(1)查明原磁场的方向及磁通量的变化情况;

(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用左手,“因动而电”用右手,因果关系不可混淆。

1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化感应电流感应电流磁场磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定则判定);感阻碍原的变化--这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理顺如下:

楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

(1)阻碍原磁通的变化(原始表速);

(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

(3)使线圈面积有扩大或缩小的趋势;

(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:

(1)查明原磁场的方向及磁通量的变化情况;

(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用左手,“因动而电”用右手,因果关系不可混淆。

1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化感应电流感应电流磁场磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定则判定);感阻碍原的变化--这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理顺如下:

楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

(1)阻碍原磁通的变化(原始表速);

(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

(3)使线圈面积有扩大或缩小的趋势;

(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:

(1)查明原磁场的方向及磁通量的变化情况;

(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用左手,“因动而电”用右手,因果关系不可混淆。

上一篇:继电器原理 下一篇:日本IMAO今尾夹具介绍-夹具技术指南
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :