其他品牌 品牌
经销商厂商性质
上海市所在地
备品备件RUBBER DESIGN 减震器
面议备品备件0155026/00 集电器电缆
面议备品备件0,03X12,7X5000MM H+S
面议备品备件GEMU 600 25M17 88301392
面议备品备件WENGLOR 放大器301251104
面议备品备件GEMU 554 50D 1 9 51 1
面议备品备件BERNSTEIN SRF-2/1/1-E-H
面议备品备件N813.4ANE KNF
面议QY-1044.0013 泵 SPECK备品备件
面议NT 63-K-MS-M3/1120 备品备件
面议VECTOR 备品备件CANAPE
面议VECTOR VN1670 备品备件
面议
ELESA-GANTER VB.639/80A-8 按钮
ELESA-GANTER VB.639/80A-8 按钮
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。烟台某电厂凝汽供管网外网供回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小"肓目"控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
四、用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。这种计量收费流量控制方案,以下述方案为佳可行方案:取3-5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速。
ahle PIS 3170 PN40 G1/8 0.369.970 Honsberg RRI-010PI/A7PSP.2E Contrinex DW-AD-503-P12-322 PERMA 21003393 Phoenix REL-MR- 24DC/21AU - 2961121 AirCom R160-04B15 Hawe SEH2-3/30F HARTING 9300100301 SOMATEC PRVA 6M mit 3m Kabel #1081 ASA-SCHALTTECHNIK SM 5 F50F U 8032 1265 Conductix-Wampfler K161.3/160/1071-K161.3/160/10 Rotor nl 5RN80M04K U24R R158 B5 0,55kW 1385min-1 halder 22110.011 VEM BSR 56.2 1,1 kW 400 V Y, 50 Hz 2705 UpM Datasensor 952701281 HETRONIK GmbH HC200-HN-24;Artikel:200.111 Beckhoff ZK1090-9191-0010 Hydrotechnik GmbH 31V7-71-35.030 ELREHA TAR 1260-2 P2 MADER LV46.2040 SALTUS 8604002434 M. MAGNET HOSOKAWA ALPIN type 120 and test sieves ? 203 mm hydac 0240 D 005 BN4HC NORIS Armaturen HFP 920.01.700 HAHN+KOLB 53724010 BOLLFILTER TYP 4.36.2 SCHUNK 5515348 SAUTER ASM134SF132 Guntermann & Drunck GmbH CATVision ARU-CPU A1110023 brinkmann KTF153/300+001 micronext Adapters for TOP CONNEXION SCHMERSAL IFL 10-30L-11STP heidenhain Deckel mit Kabel ID:310573-03 BALLUFF BOS008F BOS26K-PA-1LHC-S4-C DELOCK 61870 MP FILTRI D GMBH SF-503-M250-W TEKEL TK120.FRE.1000.11/30.S.K4.11.L07.LD2-1130 Woerner KFA-A/G/0/S/N/Z3/240/100 Hepco BHJ-25-C HKS FDR 100Lb/2P 204.000.013.000 Phoenix 2297170 ELR 1-24DC/600AC-50 legrand 77502 SUCO 1.59429E+11 Tekon-prueftechnik Gmbh D-050A SIEMENS 6AG1322-1BH01-2AA0 B&R Industrie-Elektronik GmbH X20DC1196 Proxitron IKZ306.23GH Phoenix Nr.2882653 WATT DRIVE 70WAC81N4,No.934296/1-12-1,0.75kw HygroMatik GmbH B-2204081 heidenhain APK 01 ID:547300-06 Block NKD 10/2,93 PAULSTRA 861183 Schmidt DX2-5000 Turck BL67-B-8M8 Schmidt RTM-400 Brocind s.r.l OB500-220-50AC NETTER GMBH Bausatz EE für PKL 740 HOFMANN 6183819 beck 930.83.222511 16645-0007 Murrelektronik GmbH 4000-68000-3250000.. HARTING 9200102812 Turck BMSWS 8151-8.5,6904722 SUCO 1.59432E+11 PMA KS50-102-10000-045 R+W MKH100/50/12/12 IPF OE126020 Sibre Sensor on/off MAFU GmbH 5-043-000-04000,WaCo B.4/65.2.6 (V1) hydac SAF20M12T100A-S13 Tesa 04100-00227-00 Bucher W2N32SN-6AB224VDC RITTAL SV3488.000 690VAC 160A SCHMERSAL DIM 1.1 24VAC/DC Beck 930.87.222511 16645-0017 POPPELMANN GPN 300 F 031/1000pcs VOLLMER EA12530 nr.288075-01 E+L FX 4631 (replace FX 4531) ROSE & KRIEGE 5301 Rexroth R901215393,ZDRE 10 VP2-2X/100XLMG24K4M ZIMMERLIAG ZM-R50S-FA-P100260 max,16bar Outlet Pressure : 20-100mbar Kiepe PRS 001 VIBRO IOC 4T PNR 200-560-000-1Hh ETAMIC TPE99/1,Arti-NO: 237278724, MINIMAX 901518 SCHUNK 0301430 MMSW 22-S-M8-PNP MICRONORM Woronka MRR-20 Moore s-nr:1680308 PWT/120AG1A/4-20MAB/2E Murrelektronik GmbH 7000-13301-0000000 WIN Digital-Car-Spotter-5500 WENGLOR YM22PA2 schmalz 10.01.06.01943 FG 32 PVC-50 ETAMIC E500500-306 ganter 324-125-B12-A HYDAIR WE-ZU 100-Si 16/40 D Rechner KAS-80-30-A-K-M32-PTFE-Y3 Netter NEG5060 SCHNEIDER XKBA16330 Lever gate universal Handle b2 B&R 5PC725.1505-01 ATEK 207447 Murrelektronik 7000-29801-0000000 Murrelektronik Nr.85004 ISRA VISION CP-40003044 HASBERG 0.02mm*12.7*5M norelem 08910-A3500x25 item 0.0.622.29 SCHUHMANN GW2.00E533 motrona BY340 FLEXLIFT FFRT-0137/90952 2013211088 Micro-Epsilon PC1100-3 EUROTHERM EPOWER/2PH-160A/600V/230V Artikelnr.490825 PFLITSCH 21650EZ0907 Perske KRS 51.14-2D-0102 , Nr.01148690 Reichelt PATCH-C6 10 RT ROFIN-BAASEL Lasertech GmbH & Co. KG 635035 Ahlborn Mess- und Regelungstechnik GmbH ZKA029RA RMG 10000186 Kiepe PRS S-NR:91063293001 Baumer GI355.A70C334 nr 11031592 Vogt 1555.68 PULSOTRONIC Nr.9962-2330 Fuchs TKF FA3 FLOWSERVE PNWS2AAU2N8-15 SIEMENS 7ML5033-2BA10-1A Murrelektronik GmbH 4000-68000-1210000.. Henke-Sass, Wolf GmbH DW-R-20 R3/4 BAUER ETB E008B5HN GS 180 V 5 NM west WEST 8100+ (Plus),DIKS-003-33333,P8100-21100020S160 Rexroth ZDC32P-2X/M AirCom 10272BPHX63T MERKEL V650A NBR Rexroth 3610507500 SCHMIDT-KUPPLUNG P 200.66 Φ25 Φ30 10124 HEISE 901=B=2=-1/4=BAR=C=I=K Mahle PI 4111 PS 25 Multi-Contact 18.9004 RVT DS 4/1,1 AB08/184420/1/1 Knoll TG40-20/22285. TRAFAG PT100L40 Fibro 206.71.019.045 Balluff GmbH BTL5-C10-M0150-P-S32 AXELENT W322 - 220150 Turck Nr.6602011 RSM57-TR2 GETT TKL-020-POS-white KOSTYRKA 5350.070.120 halder EH23380.0012 socla 149B3119 wampfler 081102-3021 GLASER SLK7002J060P GFA GFA TS970 DES/NES Turck VB2-FSW-FKW-FSW-45 Nr:6996009 Proxitron LTG 120.13G HBM 1-S9M/2KN-1 Phoenix 2839318 PT 2-PE/S-24AC-ST Rexroth 4WRTE16V200L-4X/6EG24EK31/A1M,R900975264 parker PVD-B1414 ABB R100.30-IO EPE F 4,2GW0200M Beckhoff KL3064 Rexroth DBEME30-7X/200YG24K31A1M Conec PD210-1K0/J/4BM STM V8-BN-00 Buhler UXE-36957-009 SIEMENS 6SY8102-0CB30 HERZOG 7-6600-270314-8 hydac EDS 347-4-400-045 Vossen PTB0-03 norelem 07320_22 Rexroth HLR01.1N-0300-N17R5-A-007-NNNN MS-Graessner_GmbH D190 10.00:1 1L B45 V2 Nr:M22190A200044 bossard M 12 / 13 INTERNORMEN 01E.450.3VG.30.E.P coax Art.-Nr.541223 KB15NC Gemue 690 15 D 711411/N PMA Prozess- und Maschinen-Automation GmbH KS90-102-0000E-000 GEFRAN TC1-B-2-K-3-A-I-B-2 030B000X00100XX Gemue 610 15D 7 15611/N Dopag C-415-12-20 SELET B01122POC5 D+P VK 06-30 norelem 02029- 206012 Rexroth 821003051 Lenord+Bauer GEL2443Y005 gel2443ekrg5g150m05 CONEC 17-103614 Proxitron IKK 050.38 GS4 Nr.2040Q zimmer MKS2005AK Bosch Rexroth R402000758 heidenhain MT25 Nr:243603-07 IFM AC5243 ODU Steckverbindungssysteme GmbH & Co. KG 309.703.150.024.000 Kral AG(pump) KF- 235.ACA.xxxxxx Murrelektronik GmbH 857781.. JAHN WSAG10/R1/4KEG 265446600000 Rexroth 5763520220 JAKSA M2451-301732 WIKA 13400436; Typ A-10 0...4 bar Eisele 99118-1410k(blue) ROSE & KRIEGE 91905 Novotechnik RSC-2831-610-111-201 Jaeger 638017566 Mayser SG-EFS 104ZK 2-1 24VDC NR.100841 Vahle 0600283/00 Lenord+Bauer GEL 2432T-1BC600 Woerner KFI-F/C/0/0/200/130 HYDORING Oy HD6020 PKP 100/56-80 Nr:519012 heidenhain LS 403 720mm ID:334755-1A hydac 0660 R 005 BN4HC NR. 1263016 Danfoss Scola RV 290P DN 3/8" PN10 VIT heidenhain ID:376886-3H Keller LE01/-1~30bar kistler 1631C2 KISTLER HARTING 19200101540 HARTING 19300061540 SOFIMA MSZ 202-MN-X-S-B-5 riegler 243.49-B Phoenix PSR-SPP-24DC/SDC4/2X1/B NR.2981499 ATOS DPZO-A-173-S5/D IFM SU7000 hydac EDS 348-5-016-000 SICK SRS50-HZA0-S21,Art-No: 1037395 hydac EDS 346-3-400-000+ZBE06 ATOS LIMHA-4/350/V-IX24DC/X12 Marc Elettronica Charger, 8504409990, input 220V output 24V/4A 150VA MESSKO 635-AT1AC1ZK06S4SB1100AA Staubli HPX08.1103/JV+HPX08.7103/JV DELTA W-S21-3-G-G3-02-H ATOS ARE-06/100/V SAMES 1517071 PMA RM 214 9407-738-21401 KEB Typ NMS30HU-7,5/1-IEC63, B14 i= 7,5 mit Kom-Nr. 2001/27494 Phoenix NR:2819008 Turck RKM52-6-RSM52 6914152 Votech filter GmbH Ursprungszeugnis Staubli RBE06.6810 AIR 287030158 Phoenix VS-PPC-F1-RJ45-POBK-1R-F - 1608197 DOLD Nr:0055557 Staubli CBI09.1102/IA/JV Turck TNLR-Q80-H1147 7030230 Buehler 63-K-VA-M3/L=670 SIRCAL P4005(MP2000/MST/01) Murrelektronik 7000-46041-8020100 Sommer GH6260 -B ME-Messsysteme GmbH KM10 100N Gelbau 3020.1306B 10meters Ahlborn ZA8214AK Vision & Control 1-29-679 SLF 6014-2ZR-C4-S1-J11-L77 Settima GR40 SMT16B 150 L S1 A RF1S3 hydac EDS 344-2-016-000 hydac EDS3448-5-0400-000 kistler 1661A5 ROSSI HB071B4230400B5 Mawomatic APA6.PC GETT KE07301 ATOS DHZO-AE-071-S5/I parker 9PCCM1200S SCHNEIDER typ:ABE9C1281M Phoenix Nr:1543223 SCHMERSAL AZ/AZM300-B1 Vahle 154438 Murr nr. 85057 KOBOLD Messring GmbH SCH-DDCM6 Proxitron IKZ 506.23 GH Nr.2471A MTL FBT - 6 Origa KY3235 10-230V heidenhain LC 183 840mm ID:557679-08 WIKA D-10-7-BBI-MK-ZP8XU NR12563278 AVS ROEMER EGV-111-B96-1/2BP-00 Teil-2/2-Wege-Magnetventil weidmueller 8228620000 Vahle 600088 SK-KSW-MSWA-PH/SU-28 DP Measurement(dpm) TT 570S Dry Cell Hoentzsch Richtungszeiger RZ16 hydac EDS 346-1-250-000 Bucher QX51-125R ATOS DPHI-2713 DC24V Aerzener 158179000 wieland 83.210.5001.2 replacement for 83.210.5009.2 Rexroth R901136533 4WRKE35W6-1000L-3X/6EG24K31/A1D3M hydac 1300 R 005 BN4HC Vahle KDST 200/25 PH 70321 item 0.0.488.94 Rexroth R412007887 Beck 901.61111L4 EMG LIC770/01 Bucher WV06-6/2-HE*-2M18G24 Phoenix 1507191 Mahle 77680440 Sommer-automatic GmbH & Co. KG GP408XNC-C GMC-I SINEAX DME442 Ruebsamen SH 250L Sterling SAT 35038732;Dichtungssatz HOERBIGER SVN221BE12PD,Nr:HV08720 Haug 08.8711.000 Aufladestab ALS radial zu 50,00 CM Carl Knoche + Co. Federn Type 930204808 Vahle SA-KDS2/40/04PH-88/15-0,5 0168073/00 schmalz FGA 16 SI-55 ELABO 32- 1J.3 Veioch typ VLP25 Turck WAKS4-8-WASS4/S366 Nr:8024218 ganter GN 603-63-M8-DBL TECHNOELECTRIC VC4P 4*630A code 14013SM B&R X20D09322 JANITZA UMG 604 E, Art.-Nr.: 52.16.002 Balluff GmbH BGL 30A-003-S49 Heinrichs Messtechnik BGN-120-25/40B2-2500-(EMT 683-002) SES-STERLING KP4 SAUER DANFOSS 162F4251 Semadeni NR:0553 Honsberg FW1-015GM006 Vahle U10/25C-6000PH 67006 KSR Kuebler AEV-M65(ASEPTIK)-VK5-L260/14-VE52R EPE 23.20 g25-S00-0-P,R928025312 GSR B0046.000015 K0460500 Middex-Electronic 9401;Tastkopf WK2 mit Tasement steute Ex 335 4V3H 1O/1S mit verzahnter Welle KAMAT 7019049 Turck 6904721 ATOS DPZO-AES-PS-273-L5/IZ Sitema KSP 022 02 COG A4N0134784, 11x3,Si50/VMQ 50 microsonic hps+35/DIU/TC/E/G1 Honsberg MR-010GM004-SR Carco GmbH S820,220*250*15AP Hoentzsch SH18 ZG1 B004/610 Euchner CET-A-BWK-50X No.096327 Turck BI5-Q08-AP6X2/S34 NR:16008 Murrelektronik GmbH 7000-94021- 2360150 Aviteq KF1-2, 230V 50HZ Gelbau Nr.3100.0110I Length=10m Phoenix 1682045 Herion MRU6HVG3 00110V,315bar 8L/MIN,51000280000 inmess R165172220 EA ED620552 PMA KS42-100-000D-000 hydac 0500 D 010 BN4HC Rexroth 820005151 sira siraflex kg.2-3,5 Kuka 134643 Stoerk ST48-WHDVM.04FP ATOS E-MI-AC-01F E+L 216127 heidenhain 359341-01 IPF IB090104 KTR ROTEX GS38 64Sh-D-H-GS 6.0-30 6.0-32 Puls QT20.241 480W FLUTEC DV-12-01.X/0 Contrinex DW-AS-503-M12 hydac 3366793; HEX S615-50-00/G1 Maico EZQ-20-2-B hydac HDA4445-A-400-000 HIMA 98 2200422 F2 DO 16 02 hydac EDS 348- 5-400-000 Ahlborn Mess- und Regelungstechnik GmbH LT01901 | |