技术文章

研究消化系统疾病模型新工具-肠类器官

北京义翘神州科技股份有限公司

2024/10/16 11:52:46

  言

现代医学的发展将会获得越来越复杂的数据,时间和空间上高度动态的系统数据将会对诊断、治疗和预测结果提供帮助。类器官有望成为治疗各种胃肠道疾病的高价值系统,用于模拟免疫反应、代谢机制、肿瘤发生与发展、感染性消化道疾病等。截止到2023年7月中旬,全-球类器官的临床研究超过170例,其中消化系统疾病的研究有70多例。为了助力类器官的培养和研究,义翘神州可提供自主研发的人源EGF、NOG、RSPO1等重组细胞因子产品。

01肠类器官研究进展

 

肠类器官(Intestinal organoids)从人类肠道组织或干细胞中分离和培养构建。通过在适当的培养条件下处理这些细胞,可以形成三维的肠道结构。当充分成熟时,人类肠道类器官会重现出芽的隐窝和绒毛结构域,分别含有增殖的ISC和祖细胞,以及分化的肠上皮细胞、杯状细胞和潘氏细胞。

 

结肠类器官(colonic organoids)作为较早成功构建的类器官模型之一,在体外模拟结肠上皮的微环境。目前有两种较为成熟的、基于成体细胞的结肠类器官模型,分别衍生于富含亮氨酸重复序列G蛋白偶联受体5阳性(LGR5+)成体干细胞(ASC)和定向分化的诱导多能干细胞(iPSC)。

 

肠道类器官被广泛用于研究肠道发育、功能和疾病。它们可以用于研究消化吸收、肠道感染、肠道炎症、肠道肿瘤等疾病的发生机制,并用于药物筛选和个体化医疗研究。肠道类器官在模拟人类肠道的复杂性和组织结构方面具有一定的优势,因为它们更接近真实的肠道环境。

 

尽管肠道类器官在研究中具有重要的应用价值,但目前仍然存在着一些挑战,如细胞培养的复杂性、缺乏完整的肠道微生物群落等。因此,肠道类器官仍在不断发展和改进,以更好地模拟和理解人类肠道的结构和功能,在肠道生理病理学基础研究、疾病建模、药物筛选与开发、再生医学等领域具有广阔应用前景。

 

02细胞因子在肠类器官中的应用

 

细胞因子作为类器官培养基的添加成分,对类器官培养起着重要作用。比如,EGF可以促进肠上皮细胞增殖,Noggin使干细胞保持未分化的状态并促进增殖,R-spondin-1具体促进肠干细胞增殖的能力。Li等人在进行小鼠肠器官培养的时候,在培养基中加入50ng/mL EGF(货号:50482-MNCH,义翘神州)、100ng/mL Noggin(货号:50688-M02H,义翘神州)和500ng/mL R-spondin-1(货号:11083-HNAS,义翘神州)。

相关文献引用的细胞因子

应用

因子

货号

文献

小鼠肠类器官培养

EGF

50482-MNCH

Doi: 10.1016/j.stemcr.2020.12.005

NOG

50688-M02H

 

RSPO1

11083-HNAS

 

肠肿瘤类器官的培养

EGF

50482-MNCH

Doi: 10.3389/fonc.2022.855674

NOG

50688-M02H

 

RSPO1

11083-HNAS

 

颅咽管瘤类器官培养

EGF

10605-HNAE

 

Doi: 10.3390/biom12121744

FGF10

10573-HNAE

 

滋养层类器官培养

RSPO1

11083-HNAS

 

Doi: 10.1016/j.xcrm.2022.100849

HGF

10463-HNAS

 

✦义翘神州细胞因子产品数据

Human RSPO1 Protein, Cat: 11083-HNAS

 

高纯度:

1.jpg

≥ 95 % as determined by SDS-PAGE.  ≥95% as determined by SEC-HPLC.

 

高批间一致性

2.jpg

Induce activation of ßcatenin response in a Topflash Luciferase assay using HEK293T human embryonic kidney cells.

 

Human Noggin Protein, Cat: 10267-HNAH

 

高纯度:

3.jpg

≥95% as determined by SDS-PAGE. ≥95% as determined by SEC-HPLC.

 

高批间一致性

4.jpg

Inhibit BMP4-induced alkaline phosphatase production by MC3T3E1 mouse preosteoblast cells.

 

 

【参考文献】

1. Taelman, J., Diaz, M., & Guiu, J. Human Intestinal Organoids: Promise and Challenge. Frontiers in cell and developmental biology, 2022. doi.org/10.3389/fcell.2022.854740

2. Kakni, P., et al. PSC-derived intestinal organoids with apical-out orientation as a tool to study nutrient uptake, drug absorption and metabolism. Frontiers in molecular biosciences, 2023. doi.org/10.3389/fmolb.2023.1102209

3. Rubert, J., et al. Intestinal Organoids: A Tool for Modelling Diet-Microbiome-Host Interactions. Trends in endocrinology and metabolism: TEM, 2022. doi.org/10.1016/j.tem.2020.02.004

4. Günther, C., et al. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut, 2022. doi.org/10.1136/gutjnl-2021-326560

5. Wang, Q., et al. Applications of human organoids in the personalized treatment for digestive diseases. Signal transduction and targeted therapy, 2022. doi.org/10.1038/s41392-022-01194-6

6. Abud, H. E., et al. Source and Impact of the EGF Family of Ligands on Intestinal Stem Cells. Frontiers in cell and developmental biology, 2021. doi.org/10.3389/fcell.2021.685665

7. Krause, C., Guzman, A., & Knaus, P. Noggin. The international journal of biochemistry & cell biology, 2011. 

doi.org/10.1016/j.biocel.2011.01.007

8. Li, Y., et al. Bach2 Deficiency Promotes Intestinal Epithelial Regeneration by Accelerating DNA Repair in Intestinal Stem Cells. Stem cell reports, 2021. doi.org/10.1016/j.stemcr.2020.12.005

9. Chen, L., et al. Molecular Biomarker of Drug Resistance Developed From Patient-Derived Organoids Predicts Survival of Colorectal Cancer Patients. Frontiers in oncology, 2022. doi.org/10.3389/fonc.2022.855674

10. Tang, M., et al. Evaluation of B7-H3 Targeted Immunotherapy in a 3D Organoid Model of Craniopharyngioma. Biomolecules, 2022. doi.org/10.3390/biom12121744

11. Ruan, D., et al. Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Cell reports. Medicine, 2022. doi.org/10.1016/j.xcrm.2022.100849

 


相关产品

猜你喜欢

当前客户在线交流已关闭
请电话联系他 :