品牌
经销商厂商性质
上海市所在地
柴油机UNIVER全气缸取样及缸内微粒理化特性
随世界柴油机保有量的持续增加,其排放微粒对环境和人类健康的危害日益严重,因此,研究柴油机微粒的生成机理及控制技术具有重大的现实意义。在CY6102直喷柴油机上,开发了一套可实现模拟增压中冷、EGR和高压共轨燃油喷射*柴油机技术的UNIVER全气缸取样系统,并利用该系统对燃烧过程中微粒的理化特性进行了研究,对碳烟形成历程进行了初步数值模拟。
柴油机UNIVER全气缸取样及缸内微粒理化特性
具体研究工作如下:开发了柴油机UNIVER全气缸取样装置,主要包括取样机构、稀释系统和气门停开机构;着重进行了筒刀总成、取样口的设计和对摇臂轴的改造。充分利用计算机的软硬件资源,设计开发了以中断技术为核心的电控单元(ECU),并采用*模糊控制策略设计了共轨压力模糊闭环控制算法,使该系统不仅可以实现喷油量、喷油定时以及取样时刻、气门关闭时刻、稀释时刻的灵活可靠控制,而且能够实现共轨压力的柔性调节。采用电子低压冲击仪(ELPI),测量燃烧过程中微粒的粒数、粒径分布规律。测量结果表明,微粒粒数浓度随曲轴转角呈单峰状分布,峰值出现在14~18°CA ATDC,燃烧后期约70%以上的微粒(粒数浓度)被氧化燃烧。微粒粒数、粒径呈类似对数正态分布,频度zui大值出现在100~200nm之间。运用场发射透射电镜和图像处理技术,考察了微粒的形态特性、基本碳粒子的微观结构和粒径分布规律。针对目前普通摆动气缸不能实现行程中任意点准确定位的问题,研制了摆动伺服气缸。构建摆动伺服气缸控制子系统,对摆动伺服气缸控制特性进行分析,研究利用BP神经网络对阻尼角度进行预测,为有效抑制定位过程中的扰动实现精确定位,提出阻尼角度动态补偿的定位控制策略。对摆动伺服气缸性能试验结果表明:在采用阻尼角度动态补偿的定位控制策略下摆动伺服气缸既保持气压传动高速特性又实现行程范围内任意位置的快速、精确定位,实验表明阻尼定位均能在0.15 s内实现,且过程平稳无速度突变,实际位移无超调和震荡,定位误差在±1.0°以内。研究结果发现,微粒呈现两种形态,一种是由基本碳粒子凝结而成的典型微粒,另一种是富含金属和非金属元素的无定形微粒,其中金属元素主要来源于润滑机油,贯穿整个燃烧过程,且独立存在;另外,典型微粒具有分形结构特性,分维数介于1.2~1.74之间,且在扩散燃烧初期有降低的趋势。在柴油机高温高压的燃烧过程中,基本碳粒子逐渐向石墨化过渡,zui终形成洋葱状的微晶结构,其层数逐渐增多,层间距逐渐减小(0.39nm减小到0.36nm);基本碳粒子粒径呈高斯分布,zui大值出现在15~30nm之间;平均粒径介于19.7~29.7nm之间,且在12~15°CA ATDC出现zui大值。将燃烧过程中微粒及其中的可溶有机成分(SOF)进行测量与分离,并采用气相色谱-质谱联用仪(GC-MS)对SOF中的多环芳香烃进行检测分析。结果表明,SOF质量随燃烧时刻的不同而有较大的变化。在燃烧初期,SOF占微粒的80%以上,随着燃烧的进程,SOF含量降低到20%左右。
柴油机UNIVER全气缸取样及缸内微粒理化特性
多环芳香烃的总质量随曲轴转角的变化规律与碳烟质量浓度随曲轴转角的变化规律*。另外,提高共轨压力和发动机转速,PAHs的质量降低。采用通用STAR-CD软件,建立了碳烟计算模型,并与实验结果进行对比分析。碳烟质量形成历程的模拟结果与实测值的变化趋势基本*。