其他品牌 品牌
经销商厂商性质
上海市所在地
备品备件WENGLOR 放大器301251104
面议备品备件GEMU 554 50D 1 9 51 1
面议备品备件BERNSTEIN SRF-2/1/1-E-H
面议备品备件N813.4ANE KNF
面议QY-1044.0013 泵 SPECK备品备件
面议NT 63-K-MS-M3/1120 备品备件
面议VECTOR 备品备件CANAPE
面议VECTOR VN1670 备品备件
面议CBX09.1152/JV/PA staubli 备品备件
面议SECOMP 21.99.8760 光缆备品备件
面议AECABLE 2Y EVA 备品备件 VECTOR
面议9900015.1 OPTRON 备品备件
面议
STROMAG 821-00132 橡胶接头
STROMAG 821-00132 橡胶接头
在电机断开电源后,为了使电机迅速停车,使用控制方法再在电机的电源上加上与正常运行电源反相的电源,此时,电机转子的旋转方向与电机旋转磁场的旋转方向相反,此时电机产生的电磁力矩为制动力矩,加快电机的减速。如下图示,利用开关Q将电枢两端的电压从电网断开,并立即将它接到一个制动电阻RL上,这时,电机内的主磁场保持不变,电枢因由惯性继续转动此时的点此力矩为制动转矩,故使电机转速下降,直到停转。
反接制动有一个大的缺点,就是:当电机转速为0时,如果不及时撤除反相后的电源,电机会反转。解决此问题的方法有以下两种:1、在电机反相电源的控制回路中,加入一个时间继电器,当反相制动一段时间后,断开反相后的电源,从而避免电机反转。但由于此种方法制动时间难于估算,因而制动效果并不精确。2、在电机反相电源的控制回路中加入一个速度继电器,当传感器检测到电机速度为0时,及时切掉电机的反相电源。由于此种方法速度继电器实时监测电机转速,因而制动效果较上一种方法要好的多。正是由于反接制动有此特点,因此,不允许反转的机械,如一些车床等,制动方法就不能采用反接制动了,而只能采用能耗制动或机械制动。
二、能耗制动:
在定子绕组中通以直流电,从而产生一个固定不变的磁场。此时,转子按旋转方向切割磁力线,从而产生一个制动力矩。由于此制动方法并不是象再生制动那样,把制动时产生的能量回馈给电网,而是单靠电机把动能消耗掉,因此叫能耗制动。又由于是在定子绕组中通以直流电来制动,因而能耗制动又叫直流注入制动。如下图示,利用倒向开关开关Q把点数电压反接到电网,此时的电枢电流将变成复制,且电流大小相当,随之产生很大的制动性质的电机转矩,是电机停转。
能耗制动是单纯依靠电机来消耗动能来达到停车的目的,因而制动效果和精度并不理想。在一些要求制动时间短和制动效果好的场合,一般不使用此制动方法。如起重机械,其运行特点是电机转速低,频繁地起动、停止和正反转,而且拖着所吊重物运行。为了实现准确而又灵活的控制,电机经常处于制动状态,并且要求制动力矩大。而能耗制动则达不到上述要求。故起重机械一般采用反接制动,且要求有机械制动,以防在运行过程中或失电时,重物滑落。
三、再生制动:
再生制动和上述两种制动方法均不同。再生制动只是电机在特殊情况下的一种工作状态,而上述两者是为达到迅速停车的目的,人为在电机上施加的一种方法。再生制动的原理:当电机的转子速度超过电机同步磁场的旋转速度时,转子绕组所产生的电磁转矩的旋转方向和转子的旋转方向相反,此时,电机处于制动状态。之所以把此时的状态叫再生制动,是因为此时电机处于发电状态,即电机的动能转化成了电能。此时,可以采取一定的措施把产生的电能回馈给电网。达到节能的目的。因此,再生制动也叫发电制动。
再生制动会出现在以下两种场合:1、起重机重物下降时,电机转子在重物重力的手动下,转子的转速有可能*步转速,此时,电机处于再生制动状态。这时,电机的制动转矩是阻止重物的下落,直至制动转矩和重力形成的转矩相等时,重物才会停止下落。2、当变频调速时,当变频器把频率降低时,同步转速也随之降低。但转子转速由于负载惯性的作用,不会马上降低,此时,电机也会处于再生制动状态,直至拖动系统的速度也下降为止。
heidenhain SPECTRO LENGTH GAUGE ST1278 ID?? 383963-02
Erhardt+Leimer SK0442N
Federtechnik Kaltbrunn + Wangs AG BF130307_30.01
Federtechnik Kaltbrunn + Wangs AG BF130307_40.01
TERMOTEK AG Y-2051.0144 Pnr.??000696278
Federtechnik Kaltbrunn + Wangs AG BF130307_20.01
Federtechnik Kaltbrunn + Wangs AG BF130307_35.01
hawe SWPN2B-WG230
BRECON 18902-201
Parker SCP-400-24-06
MURR Coil plug 7000-29481
NORELEM 06290-225
NORELEM DIN172 , A20x20
NORELEM 08910-A2500x20
NORELEM 04250-122
NORELEM 06246-1066
NORELEM 02010-061
NORELEM 02153-08036
NORELEM 04250-18
NORELEM 04250-10-2-03
NORELEM 02153-08036-9-02-03
NORELEM 06231-1025080
NORELEM 04250-08-2-03
NORELEM 06247-23210
NORELEM 06290-132
NORELEM 07534-10x16
NORELEM 08910-B3000x25
NORELEM DIN 172,B22X20
NORELEM NLM 0318820, 08910-B42X30
NORELEM 02153-08046
NORELEM 26106-02002055
NORELEM 07533-12055
NORELEM 08900-A1050x12
NORELEM 03090-2410-B
NORELEM 26112_02501755
NORELEM 04250-101
NORELEM 04250-06
NORELEM 03090 2410 B
NORELEM 02153-08056
MOOG Servo valve (die) H40JXGM4VDQ
Seeger PS45x55x0,2
Seeger DIN471 A24
Seeger PS16x22x0,5
Seeger S-B21
Seeger Ein Paket Besteht aus 10x PS16x22x0,5
FINDER Relay 40.525 24V
Conec PD210-10K/J 48M
FAGOR FXM76.20A.A1.000 39.7NM
FAGOR FXM76.20A.E1.000 39.7NM
FAGOR AXES 8055 VPP
EA Pneumatic actuator (blanking control) ZA27-GD63/AM24DC
FAGOR FXM76.20A.E1.011 59.5NM
FAGOR FXM76.20A.E1.001 59.5NM
NORD SK4282A2-100L/4OA NO??92054.08898.8/00
CALEFFI Armaturen GmbH 1087710178
SCHLUDERBACHER LOCATOR??SCHLUDERBACHER??REF. 319204
ABB M063B S-Nr 0774401
rexroth 4WRSE10V50-32/G24KO/A1V-429 1 REXROTH
rexroth SF300A1-1-4X/ 1 REXROTH
rexroth SF400 A1-1-4X 1 REXROTH
rexroth H-A4VSO500EO2/30RPPH13N00 1 REXROTH
rexroth A4VSO355DR/30RPPB13N00 1 REXROTH
rexroth R900975103?4WRZ?25?W6-220-7X/6EG24N9K4/M?
rexroth R900733567?4WRZ?16?W8-100-7X/6EG24N9K4/M?
rexroth R900965493?4WRZ?10?W8-85-7X/6EG24N9K4/M?
rexroth R900972827?4WRA?6?W1-07-2X/G24K4/V?
rexroth R900907650?4WRA?10?W60-2X/G24N9K4/V
Ravioli FCR50 BF50-4220VAC
REMO-HSE Hochspannungselektronik GmbH HBR-30-(-100K)-500-(R0) Artikel nummer:720945
Samson 4708-4572010200000
Samson 4708-1121010220000
AI-TEK AI-TEK/70085-1010-328 3/4-20 UNEF-2A
INTERNORMEN AE4.5.0.P.VA/175V DC,1.0A 20VA/23VAC,0.5A 10WATT
HBC JP440150
E+H PMP51-AA121A1PGCGMJA1
E+H PMP51-AA121A1UGCGCJA1
E+H FM151-A2AGEJB3A1A??800mm??
E+H FM151-A2AGEJB3A1A??1200mm??
HEIDENHAIN 393000-67
HEIDENHAIN 385480-41
DA09S-2403 529 06-15-1-1
siemens C79458-L2343-A2
bucher 301RC077478 24V
Infiltec GmbH CDF-180-0D NR:Z240173
bucher 301RC60985 D25503/6/ZV
TOX PRESS HEAD PRESSOTECHNIK BS8.30.50.06
TOX Hydropneumatic press head S.8.30.50.06
Martin Martin S218+
HellermannTyton GmbH HLB 35??70-80350
KORTHO HQC REGULATION UNIT KORTHO 809477
KORTHO MARQUING UNIT KORTHO H210 AF
KORTHO Marking tool KORTHO 814532
KORTHO Marking head KORTHO 814561
KORTHO Textplate KORTHO HQC-4R-25 810135
energypumps EB419
Brinkmann Pumps K. H. Brinkmann GmbH & Co. KG TH180/650+001
GSR b5027/1001/T522-th-no-aas 1-40BAR,g4/6,dn40
LOWARA PLM112RB14S1/340 4KW 3AC
Contrinex DW-LS-703-M12-002
SAMSON 4708-4572010200000
samson 4708-1121010220000
Schmidt SEMIFLEX NFB7.12/4 SP?32 SP?32
NOVOTECHNIK Linear transducer NOVOTECHNIK TS-25
INA NUKR 35 A
moog D661-4902
INTERNORMEN HNU.401.10VG.NR.EP-P6-S2.AE70
siemens 6ES5246-4UB21
Rose+Krieger LINEAR UNIT EV 60 COD. 70160310780
Rose+Krieger DRIVING CART COD. 16009110
Z-LASER Z20M18B-638-1G90;ARLNR.ZM18R0012;S.NR.1000015494
Bahr 8M50
schmalz SGF 160EPDM-55 G1/2-IG
REFCO BM2-6-DS-R22,PART NO:9884
HARTING HARTING-POF IP20 PLUG -9350024002
HARTING HARTING -HAN PUSHPULL -9352210401
SCHMERSAL Safety sensor??SCHMERSAL??BNS3302ZST-2127
HARTING HARTING -HAN PUSHPULL -9354310401
Benedikt&Jager Pedal control I. BENEDIKT FSM-02
KNOLL KTS 50-74-T Nr.205209 Nr.200314442
HALDER SMALL SCALE LOCKING SET HALDER 2505.01
HALDER POSITIONER HALDER EH 2206.110
HALDER POSITIONING DEVICE HALDER EH-2212-927
GRASSLIN 05.15.1038.1 UWZ48KZD 220-240V 50/60HZ
GRASSLIN GRASSLIN Turnus 501A ??18.18.0001.1??
FIAMA LOCATOR FIAMA OP6 B 5.0 DX F20 R
FIAMA LOCATOR FIAMA OP3A10SXF14R
FIAMA LOCATOR FIAMA OP3A40DXF14R SHT-HK-16
FIAMA MAGNET FIRMA,Super Pot cod. MPD 8050 S
FIAMA MAGNET FIRMA Super Pot cod. MPD 66 S
CAVOTEC RCX-11114-006
ALLEN-BRADLEY 0517 269460
Montech AG GPPMI-2X
ALLEN-BRADLEY 0517 269460
dittmer Thermo Probe_1PT100 (with fixing clip), D1202761101=1*PT100/3L DIN-B, ART NO. cr87422410
rexroth 00902513 A214-276
COPELAND SCROLL model:ZR190KCE-TFD-650 380V 50HZ LRA I-BLOCK:157-174 I-OPER-MAX:34 V(M3/H):43.3 N(MIN-1):2900
KUKA 106222
Mercateo 488BF 6246 8x14x0,2
645 60902 NR:904897
Martor NO.40 0.45mm for 40140
Buehler NT M-VA-M3/127-1W
Buehler NT M-VA-M3/207-1W
Buehler NT M-VA-M3/387-1W
Buschjost gmbH NR.82702000000
ATOS 6A0501 M5/250
ATOS 6A0502-01
Grossenbacher Systeme AG PFA/TFA -NR.1210221-DN=10,L=2500-M.MUTTER M18X1,5-FA
RENOLD M171580/1
KTR GS19/24P
Lechler GmbH 686.606.16,0-7.04L/MIN
Martens Elektronik GmbH TW500-3-1
MARPOSS 3427005100
ROSE+KRIEGER TUBE RK L=1800,80404011800
ROSE+KRIEGER Cross clamp RK,104 000 000 2 0 0
ROSE+KRIEGER TUBE RK L=300,8040401300
ROSE+KRIEGER FLANGE CLAMP FK-50 WITH LEVER,12500000021
ROSE+KRIEGER ALUMINIUM TUBING TAR.0050 D50x3 L. 2m,82503013000
ROSE+KRIEGER Solid Clamps FKR50,22500003026
ROSE-KRIEGER Join clamp K8 01 30
wandfluh WANDFLUH ZS22101AB-S1714
BAUER BG10-11/D08LA4-S/E008B8??NO.2014132-1
BAUER BG20-11/D09LA4-S/Z008B8 ,NO.25147574-1
Biffi Icon 2000 WGR-200-010/2000-10 Worm Gear Reducer (WGR) for quarter turn SM-10 Nominal torque 2000Nm Min Torque 800 NM Max 3000Nm Op time 125 Sec. End user: vico Indonesia;contry: Indonesia;project name:procurement parts of goods
BEI IDEACOD MHMS-DPC1B-12B-C100-H3P
Biffi Icon 2000 WGR-200-010/2000-10 Worm Gear Reducer (WGR) for quarter turn SM-10 Nominal torque 2000Nm Min Torque 800 NM Max 3000Nm Op time 125 Sec. End user: vico Indonesia;contry: Indonesia;project name:procurement parts of goods
Atos DKE-1714 220V
Atos AGAM-10/20/350/21
VISHAY Phafso 17.5/3/1,No.508097
ERNST AT250DR-NX
Sprint electric limited insertion module controller??400E 2696
MOTOVARIO MOTOR|TS80A4
GOSSEN ableitstrom-messadapter,Z3450,nach EN 60601-1
WERMA LED LIGHT (GREEN)|20120075
Di-soric OGWSD100P3K-TSSL
Di-soric 202436 IR 35 PSOK-IBS
DOPAG 418.10.00A.0.17374
MURR Power Module MPS5-230/24
MURR Power Module MPS10-230/24
MURR Power supply MPS20-230/24 3A
ATOS TYPE: RI-TERS-PS-01H/I 20/BM103A
Heidenhain 272371-1Z
DODEN AIR SCREW FIGUR 184 / TAFEL 1 R1/8
BLOHM THREADED PIN WITH THRUST POINT K??D0012.713.00.00 DIN 6332 / SM10*60
Dunkermotoren GR42x40,8842702575+8871001115+8885101660
Weidmuller CP SNT,1000W,24V,40A
HASCO Z169/16//4703
EIDE D661-5002
METRIX ST5484E-121-532-00
AIRTEC MC-07-510-HN DC24V
KIEPE VG 033/5
entegris 4100-100G-F02-B30-A-P2-U1
FLOWSERVE 2????C44 66PM SW+25 39SN DN50 PN40
FLOWSERVE 1.5????C44 66PM SW+25 39SN DN40
FLOWSERVE 2????C44 66PM SW+25 39SN DN50
Deutz Deutz 0434.318HX 5G 2184HX 4F(01182184)
FLOWSERVE 1???? C44 66PM SW+15 39SN DN25 PN40
FLOWSERVE 1???? C44 66PM SW+15 39SN DN25
FLOWSERVE 1.5????C44 66PM SW+25 39SN DN32
DEUTZ 28V 80A 01183191??AAN512111??203??064
在电机断开电源后,为了使电机迅速停车,使用控制方法再在电机的电源上加上与正常运行电源反相的电源,此时,电机转子的旋转方向与电机旋转磁场的旋转方向相反,此时电机产生的电磁力矩为制动力矩,加快电机的减速。如下图示,利用开关Q将电枢两端的电压从电网断开,并立即将它接到一个制动电阻RL上,这时,电机内的主磁场保持不变,电枢因由惯性继续转动此时的点此力矩为制动转矩,故使电机转速下降,直到停转。
反接制动有一个大的缺点,就是:当电机转速为0时,如果不及时撤除反相后的电源,电机会反转。解决此问题的方法有以下两种:1、在电机反相电源的控制回路中,加入一个时间继电器,当反相制动一段时间后,断开反相后的电源,从而避免电机反转。但由于此种方法制动时间难于估算,因而制动效果并不精确。2、在电机反相电源的控制回路中加入一个速度继电器,当传感器检测到电机速度为0时,及时切掉电机的反相电源。由于此种方法速度继电器实时监测电机转速,因而制动效果较上一种方法要好的多。正是由于反接制动有此特点,因此,不允许反转的机械,如一些车床等,制动方法就不能采用反接制动了,而只能采用能耗制动或机械制动。
二、能耗制动:
在定子绕组中通以直流电,从而产生一个固定不变的磁场。此时,转子按旋转方向切割磁力线,从而产生一个制动力矩。由于此制动方法并不是象再生制动那样,把制动时产生的能量回馈给电网,而是单靠电机把动能消耗掉,因此叫能耗制动。又由于是在定子绕组中通以直流电来制动,因而能耗制动又叫直流注入制动。如下图示,利用倒向开关开关Q把点数电压反接到电网,此时的电枢电流将变成复制,且电流大小相当,随之产生很大的制动性质的电机转矩,是电机停转。
能耗制动是单纯依靠电机来消耗动能来达到停车的目的,因而制动效果和精度并不理想。在一些要求制动时间短和制动效果好的场合,一般不使用此制动方法。如起重机械,其运行特点是电机转速低,频繁地起动、停止和正反转,而且拖着所吊重物运行。为了实现准确而又灵活的控制,电机经常处于制动状态,并且要求制动力矩大。而能耗制动则达不到上述要求。故起重机械一般采用反接制动,且要求有机械制动,以防在运行过程中或失电时,重物滑落。
三、再生制动:
再生制动和上述两种制动方法均不同。再生制动只是电机在特殊情况下的一种工作状态,而上述两者是为达到迅速停车的目的,人为在电机上施加的一种方法。再生制动的原理:当电机的转子速度超过电机同步磁场的旋转速度时,转子绕组所产生的电磁转矩的旋转方向和转子的旋转方向相反,此时,电机处于制动状态。之所以把此时的状态叫再生制动,是因为此时电机处于发电状态,即电机的动能转化成了电能。此时,可以采取一定的措施把产生的电能回馈给电网。达到节能的目的。因此,再生制动也叫发电制动。
再生制动会出现在以下两种场合:1、起重机重物下降时,电机转子在重物重力的手动下,转子的转速有可能*步转速,此时,电机处于再生制动状态。这时,电机的制动转矩是阻止重物的下落,直至制动转矩和重力形成的转矩相等时,重物才会停止下落。2、当变频调速时,当变频器把频率降低时,同步转速也随之降低。但转子转速由于负载惯性的作用,不会马上降低,此时,电机也会处于再生制动状态,直至拖动系统的速度也下降为止。在电机断开电源后,为了使电机迅速停车,使用控制方法再在电机的电源上加上与正常运行电源反相的电源,此时,电机转子的旋转方向与电机旋转磁场的旋转方向相反,此时电机产生的电磁力矩为制动力矩,加快电机的减速。如下图示,利用开关Q将电枢两端的电压从电网断开,并立即将它接到一个制动电阻RL上,这时,电机内的主磁场保持不变,电枢因由惯性继续转动此时的点此力矩为制动转矩,故使电机转速下降,直到停转。
反接制动有一个大的缺点,就是:当电机转速为0时,如果不及时撤除反相后的电源,电机会反转。解决此问题的方法有以下两种:1、在电机反相电源的控制回路中,加入一个时间继电器,当反相制动一段时间后,断开反相后的电源,从而避免电机反转。但由于此种方法制动时间难于估算,因而制动效果并不精确。2、在电机反相电源的控制回路中加入一个速度继电器,当传感器检测到电机速度为0时,及时切掉电机的反相电源。由于此种方法速度继电器实时监测电机转速,因而制动效果较上一种方法要好的多。正是由于反接制动有此特点,因此,不允许反转的机械,如一些车床等,制动方法就不能采用反接制动了,而只能采用能耗制动或机械制动。
二、能耗制动:
在定子绕组中通以直流电,从而产生一个固定不变的磁场。此时,转子按旋转方向切割磁力线,从而产生一个制动力矩。由于此制动方法并不是象再生制动那样,把制动时产生的能量回馈给电网,而是单靠电机把动能消耗掉,因此叫能耗制动。又由于是在定子绕组中通以直流电来制动,因而能耗制动又叫直流注入制动。如下图示,利用倒向开关开关Q把点数电压反接到电网,此时的电枢电流将变成复制,且电流大小相当,随之产生很大的制动性质的电机转矩,是电机停转。
能耗制动是单纯依靠电机来消耗动能来达到停车的目的,因而制动效果和精度并不理想。在一些要求制动时间短和制动效果好的场合,一般不使用此制动方法。如起重机械,其运行特点是电机转速低,频繁地起动、停止和正反转,而且拖着所吊重物运行。为了实现准确而又灵活的控制,电机经常处于制动状态,并且要求制动力矩大。而能耗制动则达不到上述要求。故起重机械一般采用反接制动,且要求有机械制动,以防在运行过程中或失电时,重物滑落。
三、再生制动:
再生制动和上述两种制动方法均不同。再生制动只是电机在特殊情况下的一种工作状态,而上述两者是为达到迅速停车的目的,人为在电机上施加的一种方法。再生制动的原理:当电机的转子速度超过电机同步磁场的旋转速度时,转子绕组所产生的电磁转矩的旋转方向和转子的旋转方向相反,此时,电机处于制动状态。之所以把此时的状态叫再生制动,是因为此时电机处于发电状态,即电机的动能转化成了电能。此时,可以采取一定的措施把产生的电能回馈给电网。达到节能的目的。因此,再生制动也叫发电制动。
再生制动会出现在以下两种场合:1、起重机重物下降时,电机转子在重物重力的手动下,转子的转速有可能*步转速,此时,电机处于再生制动状态。这时,电机的制动转矩是阻止重物的下落,直至制动转矩和重力形成的转矩相等时,重物才会停止下落。2、当变频调速时,当变频器把频率降低时,同步转速也随之降低。但转子转速由于负载惯性的作用,不会马上降低,此时,电机也会处于再生制动状态,直至拖动系统的速度也下降为止。在电机断开电源后,为了使电机迅速停车,使用控制方法再在电机的电源上加上与正常运行电源反相的电源,此时,电机转子的旋转方向与电机旋转磁场的旋转方向相反,此时电机产生的电磁力矩为制动力矩,加快电机的减速。如下图示,利用开关Q将电枢两端的电压从电网断开,并立即将它接到一个制动电阻RL上,这时,电机内的主磁场保持不变,电枢因由惯性继续转动此时的点此力矩为制动转矩,故使电机转速下降,直到停转。
反接制动有一个大的缺点,就是:当电机转速为0时,如果不及时撤除反相后的电源,电机会反转。解决此问题的方法有以下两种:1、在电机反相电源的控制回路中,加入一个时间继电器,当反相制动一段时间后,断开反相后的电源,从而避免电机反转。但由于此种方法制动时间难于估算,因而制动效果并不精确。2、在电机反相电源的控制回路中加入一个速度继电器,当传感器检测到电机速度为0时,及时切掉电机的反相电源。由于此种方法速度继电器实时监测电机转速,因而制动效果较上一种方法要好的多。正是由于反接制动有此特点,因此,不允许反转的机械,如一些车床等,制动方法就不能采用反接制动了,而只能采用能耗制动或机械制动。
二、能耗制动:
在定子绕组中通以直流电,从而产生一个固定不变的磁场。此时,转子按旋转方向切割磁力线,从而产生一个制动力矩。由于此制动方法并不是象再生制动那样,把制动时产生的能量回馈给电网,而是单靠电机把动能消耗掉,因此叫能耗制动。又由于是在定子绕组中通以直流电来制动,因而能耗制动又叫直流注入制动。如下图示,利用倒向开关开关Q把点数电压反接到电网,此时的电枢电流将变成复制,且电流大小相当,随之产生很大的制动性质的电机转矩,是电机停转。
能耗制动是单纯依靠电机来消耗动能来达到停车的目的,因而制动效果和精度并不理想。在一些要求制动时间短和制动效果好的场合,一般不使用此制动方法。如起重机械,其运行特点是电机转速低,频繁地起动、停止和正反转,而且拖着所吊重物运行。为了实现准确而又灵活的控制,电机经常处于制动状态,并且要求制动力矩大。而能耗制动则达不到上述要求。故起重机械一般采用反接制动,且要求有机械制动,以防在运行过程中或失电时,重物滑落。
三、再生制动:
再生制动和上述两种制动方法均不同。再生制动只是电机在特殊情况下的一种工作状态,而上述两者是为达到迅速停车的目的,人为在电机上施加的一种方法。再生制动的原理:当电机的转子速度超过电机同步磁场的旋转速度时,转子绕组所产生的电磁转矩的旋转方向和转子的旋转方向相反,此时,电机处于制动状态。之所以把此时的状态叫再生制动,是因为此时电机处于发电状态,即电机的动能转化成了电能。此时,可以采取一定的措施把产生的电能回馈给电网。达到节能的目的。因此,再生制动也叫发电制动。
再生制动会出现在以下两种场合:1、起重机重物下降时,电机转子在重物重力的手动下,转子的转速有可能*步转速,此时,电机处于再生制动状态。这时,电机的制动转矩是阻止重物的下落,直至制动转矩和重力形成的转矩相等时,重物才会停止下落。2、当变频调速时,当变频器把频率降低时,同步转速也随之降低。但转子转速由于负载惯性的作用,不会马上降低,此时,电机也会处于再生制动状态,直至拖动系统的速度也下降为止。在电机断开电源后,为了使电机迅速停车,使用控制方法再在电机的电源上加上与正常运行电源反相的电源,此时,电机转子的旋转方向与电机旋转磁场的旋转方向相反,此时电机产生的电磁力矩为制动力矩,加快电机的减速。如下图示,利用开关Q将电枢两端的电压从电网断开,并立即将它接到一个制动电阻RL上,这时,电机内的主磁场保持不变,电枢因由惯性继续转动此时的点此力矩为制动转矩,故使电机转速下降,直到停转。
反接制动有一个大的缺点,就是:当电机转速为0时,如果不及时撤除反相后的电源,电机会反转。解决此问题的方法有以下两种:1、在电机反相电源的控制回路中,加入一个时间继电器,当反相制动一段时间后,断开反相后的电源,从而避免电机反转。但由于此种方法制动时间难于估算,因而制动效果并不精确。2、在电机反相电源的控制回路中加入一个速度继电器,当传感器检测到电机速度为0时,及时切掉电机的反相电源。由于此种方法速度继电器实时监测电机转速,因而制动效果较上一种方法要好的多。正是由于反接制动有此特点,因此,不允许反转的机械,如一些车床等,制动方法就不能采用反接制动了,而只能采用能耗制动或机械制动。
二、能耗制动:
在定子绕组中通以直流电,从而产生一个固定不变的磁场。此时,转子按旋转方向切割磁力线,从而产生一个制动力矩。由于此制动方法并不是象再生制动那样,把制动时产生的能量回馈给电网,而是单靠电机把动能消耗掉,因此叫能耗制动。又由于是在定子绕组中通以直流电来制动,因而能耗制动又叫直流注入制动。如下图示,利用倒向开关开关Q把点数电压反接到电网,此时的电枢电流将变成复制,且电流大小相当,随之产生很大的制动性质的电机转矩,是电机停转。
能耗制动是单纯依靠电机来消耗动能来达到停车的目的,因而制动效果和精度并不理想。在一些要求制动时间短和制动效果好的场合,一般不使用此制动方法。如起重机械,其运行特点是电机转速低,频繁地起动、停止和正反转,而且拖着所吊重物运行。为了实现准确而又灵活的控制,电机经常处于制动状态,并且要求制动力矩大。而能耗制动则达不到上述要求。故起重机械一般采用反接制动,且要求有机械制动,以防在运行过程中或失电时,重物滑落。
三、再生制动:
再生制动和上述两种制动方法均不同。再生制动只是电机在特殊情况下的一种工作状态,而上述两者是为达到迅速停车的目的,人为在电机上施加的一种方法。再生制动的原理:当电机的转子速度超过电机同步磁场的旋转速度时,转子绕组所产生的电磁转矩的旋转方向和转子的旋转方向相反,此时,电机处于制动状态。之所以把此时的状态叫再生制动,是因为此时电机处于发电状态,即电机的动能转化成了电能。此时,可以采取一定的措施把产生的电能回馈给电网。达到节能的目的。因此,再生制动也叫发电制动。
再生制动会出现在以下两种场合:1、起重机重物下降时,电机转子在重物重力的手动下,转子的转速有可能*步转速,此时,电机处于再生制动状态。这时,电机的制动转矩是阻止重物的下落,直至制动转矩和重力形成的转矩相等时,重物才会停止下落。2、当变频调速时,当变频器把频率降低时,同步转速也随之降低。但转子转速由于负载惯性的作用,不会马上降低,此时,电机也会处于再生制动状态,直至拖动系统的速度也下降为止。在电机断开电源后,为了使电机迅速停车,使用控制方法再在电机的电源上加上与正常运行电源反相的电源,此时,电机转子的旋转方向与电机旋转磁场的旋转方向相反,此时电机产生的电磁力矩为制动力矩,加快电机的减速。如下图示,利用开关Q将电枢两端的电压从电网断开,并立即将它接到一个制动电阻RL上,这时,电机内的主磁场保持不变,电枢因由惯性继续转动此时的点此力矩为制动转矩,故使电机转速下降,直到停转。
反接制动有一个大的缺点,就是:当电机转速为0时,如果不及时撤除反相后的电源,电机会反转。解决此问题的方法有以下两种:1、在电机反相电源的控制回路中,加入一个时间继电器,当反相制动一段时间后,断开反相后的电源,从而避免电机反转。但由于此种方法制动时间难于估算,因而制动效果并不精确。2、在电机反相电源的控制回路中加入一个速度继电器,当传感器检测到电机速度为0时,及时切掉电机的反相电源。由于此种方法速度继电器实时监测电机转速,因而制动效果较上一种方法要好的多。正是由于反接制动有此特点,因此,不允许反转的机械,如一些车床等,制动方法就不能采用反接制动了,而只能采用能耗制动或机械制动。
二、能耗制动:
在定子绕组中通以直流电,从而产生一个固定不变的磁场。此时,转子按旋转方向切割磁力线,从而产生一个制动力矩。由于此制动方法并不是象再生制动那样,把制动时产生的能量回馈给电网,而是单靠电机把动能消耗掉,因此叫能耗制动。又由于是在定子绕组中通以直流电来制动,因而能耗制动又叫直流注入制动。如下图示,利用倒向开关开关Q把点数电压反接到电网,此时的电枢电流将变成复制,且电流大小相当,随之产生很大的制动性质的电机转矩,是电机停转。
能耗制动是单纯依靠电机来消耗动能来达到停车的目的,因而制动效果和精度并不理想。在一些要求制动时间短和制动效果好的场合,一般不使用此制动方法。如起重机械,其运行特点是电机转速低,频繁地起动、停止和正反转,而且拖着所吊重物运行。为了实现准确而又灵活的控制,电机经常处于制动状态,并且要求制动力矩大。而能耗制动则达不到上述要求。故起重机械一般采用反接制动,且要求有机械制动,以防在运行过程中或失电时,重物滑落。
三、再生制动:
再生制动和上述两种制动方法均不同。再生制动只是电机在特殊情况下的一种工作状态,而上述两者是为达到迅速停车的目的,人为在电机上施加的一种方法。再生制动的原理:当电机的转子速度超过电机同步磁场的旋转速度时,转子绕组所产生的电磁转矩的旋转方向和转子的旋转方向相反,此时,电机处于制动状态。之所以把此时的状态叫再生制动,是因为此时电机处于发电状态,即电机的动能转化成了电能。此时,可以采取一定的措施把产生的电能回馈给电网。达到节能的目的。因此,再生制动也叫发电制动。
再生制动会出现在以下两种场合:1、起重机重物下降时,电机转子在重物重力的手动下,转子的转速有可能*步转速,此时,电机处于再生制动状态。这时,电机的制动转矩是阻止重物的下落,直至制动转矩和重力形成的转矩相等时,重物才会停止下落。2、当变频调速时,当变频器把频率降低时,同步转速也随之降低。但转子转速由于负载惯性的作用,不会马上降低,此时,电机也会处于再生制动状态,直至拖动系统的速度也下降为止。