其他品牌 品牌
经销商厂商性质
北京市所在地
GMP蓄电池PM100-12 12V100AH安装报价
面议GMP蓄电池PM90-12 12V90AH含税报价
面议GMP蓄电池PM80-12 12V80AH项目报备
面议GMP蓄电池PM70-12 12V70AH网点销售
面议GMP蓄电池PM65-12 12V65AH规格及型号
面议GMP蓄电池PM38-12 12V38AH全国报价
面议GMP蓄电池PM33-12 12V33AH支持报备
面议GMP蓄电池PM31-12 12V31AH免费安装
面议GMP蓄电池PM26-12 12V26AH三年保修
面议GMP蓄电池PM24-12 12V24AH质保三年
面议GMP蓄电池PM17-12 12V17AH上门安装
面议GMP蓄电池PM12-12 12V12AH包含安装
面议理士蓄电池DJM12-250 12V250AH报价
理士蓄电池DJM12-250 12V250AH报价
我司代理蓄电池产品,;如需详细了解更多蓄电池技术参数及规格,请通过以上的联系我;我们公司还设有经验丰富的工程师团队;对一些疑难解答和方案设计都有着多年的经验,我们将热诚为你服务!!!
赛特蓄电池简介:
我公司生产的非晶合金变压器,性能符合IEC60076、GB1094和JB/T10318标准。铁芯采用美国或日本技术生产的非晶合金带材制造。其油箱为纹波油箱,由德国GEORG公司油箱自动生产线加工制造,表面前处理液和涂装粉末均采用品牌产品,油箱经自动生产流水线脱脂、酸洗、磷化、电泳前处理后喷粉,再高温固化,变压器外表抗腐蚀能力强,线圈采用高强度漆包线(或纸包线)卷绕,安匝分布均匀,绝缘结构合理,具有很强的抗短路能力,器身采用免吊芯结构,密封件采用优质丙烯酸酯橡胶,能有效防止光老化,热老化。
应用领域 产品特性
福建赛特蓄电池科技有限公司位于福建安溪经济开发区龙桥工业园,地处福建省厦漳泉经济“金三角”区域。现有资产五亿多元人民币,占地300亩。
公司主要生产高容量密封型免维护无镉铅酸蓄电池及铅酸蓄电池极板。其中包括起动用、动力用、固定用和太阳能风能储能用等各大类型,共600多个规格品种,产品海内外。
公司是“福建省百家重点工业企业”之一,企业规模位居全国同*,其中商品蓄电池极板生产规模大、规格全、品种多。
公司是铅酸蓄电池国家标准的主要起草单位,先后通过了ISO9001质量管理体系认证、ISO14001环境管理体系认证及OHS18001职业健康安全体系认证,被评为“福建省质量管理*企业”。产品通过了欧盟CE、美国UL等一系列国内认证。
公司以科学发展观为指引,坚持“诚信、拼搏、创新、感恩、共赢”经营理念,走规范化、精细化管理道路。注重科技创新,通过与较有名高校开展产学研合作,有效整合人才、技术、市场等各种资源,提高企业自主创新能力,不断提升企业综合实力。
公司坚持“以人为本”的理念,尊重员工,关爱员工,创建和谐健康、奋发有为的工作和生活氛围。坚持“保护环境,预防污染,诚信守法,持续改进”的环境方针,加大环保投资力度,积极承担社会责任,全力推进节能减排和清洁化生产,努力创建资源节约型、环境友好型企业。
闽华公司以提供清洁、环保、可再生的绿色电源产品为光荣使命,将在新的起点上牢固把握时代发展机遇,再铸闽华新辉煌。
赛特蓄电池失效可能有多种原因造成的,例如硫化、失水、热失控、活性物质脱落、极板软化等等,接下来将一一为大家介绍和分析。
1.硫化
赛特蓄电池充放电的过程是电化学反应的过程,放电时,生成硫酸铅,充电时硫酸铅还原为氧化铅。这个电化学反应过程正常情况下是循环可逆的,但硫酸铅是一种容易结晶的盐化物,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会"抱成"团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,这就破坏了原本可逆的循环,导致硫酸铅部分不可逆。结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会吸附在栅板上,造成了栅板工作面积下降,荷贝克蓄电池发热失水,荷贝克蓄电池容量下降,这一现象叫硫化,也就是常说的老化。硫化还会导致短路、活性物质松弛脱落、栅板变形断裂等"并发症"。
只要是赛特蓄电池,在使用的过程中都会硫化,但其它领域的铅酸蓄电池却比电动自行车上使用的赛特蓄电池有着更长的寿命,这是因为电动车的赛特蓄电池有着一个更容易硫化的工作环境。与汽车用启动电池不同,汽车电池点火放电后,电池始终处于浮充状态,放电形成的硫酸铅很快又被转化为氧化铅,而电动车放电时,不可能同时进行充电,这就造成硫酸铅大量堆集,如果深放电,这时硫酸铅浓度更高,而且电动车骑行后很难有条件及时充电,放电形成的硫酸铅不能及时充电转化为氧化铅,就会形成结晶。所以,循环寿命,根据放电深度不同而差别很大,放电深度越深,循环次数越少,放电深度越浅,循环次数越多,根据试验结果放电深渡与循环次数联系如下表:
一些赛特蓄电池在做70%的1C充电和60%的2C放电中,由于采用连续大电流循环,破坏了电池生成大硫酸铅结晶的条件,所以可能看不到赛特蓄电池硫化对电池的破坏。如果试验中途停顿,赛特蓄电池硫化的问题就会显现。由于赛特蓄电池重量大,一些用户经常采取电池经过多次使用放完电才再次充电,这样赛特蓄电池放电以后没有及时充电,赛特蓄电池硫化就比较严重。另外,赛特蓄电池的硫酸比重比较高,也是赛特蓄电池硫化的重要因素。而赛特蓄电池硫化,破坏了负极板氧循环的能力,形成加速失水。这样,赛特蓄电池的硫酸比重更加高,导致更加容易导致赛特蓄电池硫化。所以,赛特蓄电池硫化的程度可能不同,但是对赛特蓄电池的寿命影响却是普遍的。
2.失水
密封赛特蓄电池的基本原理之一就是正极板析氧以后,氧气直接到负极板与负极板的析氢还原为水,考核赛特蓄电池这个技术指标的参数叫做"密封反应效率",这种现象叫做"氧循环"。这样,赛特蓄电池的失水很少,实现了"免维护",就是免加水。但密封赛特蓄电池的这种氧循环在电动自行车上却被破坏,导致赛特电池大量失水。
为了满足电池在8小时以内充满电,所以在三段式恒压限流充电中,如36伏充电器的恒压为44.4伏,3个单体赛特蓄电池共有18个单格,折合单格电压就为2.466V。这样,大大超过赛特蓄电池正极板析氧电压的2.35V和负极板析氢电压的2.42V。一些充电器制造商的产品为了降低充电时间的指示,提高了恒压转浮充的电流,而使得充电指示充满电以后,还没有充满电,就靠提高浮充电压来弥补。这样,很多充电器的浮充电压超过单格电压2.35V,这样在浮充阶段还在大量析氧。而赛特蓄电池的氧循环又不好,这样在浮充阶段也在不断的排气。
一组36伏赛特蓄电池有3个单体电池,每个单体赛特蓄电池有6个单格,每个单格有15块以上正负栅板,一组赛特蓄电池就少有270个焊点,如果产生千分之一的虚焊就会导致每4组赛特蓄电池必然有一组不合格,而铅钙板非常容易因析钙而造成虚焊,所以电池制造商普遍采用低锑合金板,而低锑合金的析气电压更低,赛特蓄电池出气量更大,失水就更加严重。
浮充赛特蓄电池的硫酸标准比重应该在1.21~1.28之间,但为适应电动自行车大容量、大电流放电的要求,赛特蓄电池的硫酸比重一般都在1.36~1.38左右。由于赛特蓄电池的硫酸比重相对高了很多,所以,赛特蓄电池的硫化也相对严重。赛特蓄电池放电以后到第二天充电以前,硫酸比重高的赛特蓄电池的硫化明显。这样,更加降低了负极板氧循环的能力。而失水以后的电池,失去的主要是水,留下了硫酸的成分,相当于进一步提高了硫酸的比重,这样就使赛特蓄电池更加容易硫化。所以,赛特蓄电池硫化加重了失水,失水又加重了硫化。对用户而言,"密封"是必要的,否则酸液溢出的后果不堪设想,但在电动车领域过份地推广"免维护"的概念是不合适的。
型号 | 额定电压( V ) | 额定容量( AH ) | 外形尺寸(mm) | 参考重量 | 端子 | |||
长 | 宽 | 高 | 总高 | 形式 | ||||
BT-6M1.3AC | 6 | 1.3 | 98 | 24 | 52 | 58 | 0.29 | F0 |
BT-6M2.8AC | 6 | 2.8 | 66 | 34 | 98 | 102 | 0.57 | F0 |
BT-6M3.2AC | 6 | 3.2 | 126 | 34 | 61 | 65 | 0.61 | F0 |
BT-6M4.0AC | 6 | 4.0 | 70 | 47 | 100 | 104 | 0.68 | F1/F2 |
BT-6M4.5AC | 6 | 4.5 | 70 | 47 | 100 | 104 | 0.74 | F1/F2 |
BT-6M5.0AT | 6 | 5.0 | 170 | 35 | 70 | 75 | 0.98 | F3 |
BT-6M7.0AT | 6 | 7.0 | 151 | 35 | 94 | 98 | 1.04 | F1/F2 |
BT-6M10AC | 6 | 10 | 151 | 50 | 93 | 98 | 1.6 | F1/F2 |
BT-6M12AC | 6 | 12 | 151 | 50 | 93 | 98 | 1.75 | F1/F2 |
BT-12M0.8AC | 12 | 0.8 | 97 | 25 | 63 | 63 | 0.36 | 引线 |
BT-12M1.3AT | 12 | 1.3 | 97 | 44 | 52 | 58 | 0.55 | F0 |
BT-12M2.2AT | 12 | 2.2 | 178 | 35 | 61 | 66 | 0.92 | F0 |
BT-12M2.3AC | 12 | 2.3 | 71 | 48 | 99 | 103 | 0.73 | F0 |
BT-12M2.8AC | 12 | 2.8 | 71 | 48 | 99 | 103 | 0.86 | F0 |
BT-12M3.3AT | 12 | 3.3 | 135 | 68 | 62 | 67 | 1.32 | F0 |
BT-12M3.6AT | 12 | 3.6 | 135 | 68 | 62 | 67 | 1.4 | F0 |
BT-12M4.0AC | 12 | 4.0 | 90 | 70 | 101 | 107 | 1.42 | F1/F2 |
BT-12M4.5AC | 12 | 4.5 | 90 | 70 | 101 | 107 | 1.44 | F1/F2 |
BT-12M5.0AC | 12 | 5.0 | 140 | 47 | 101 | 107 | 1.63 | F1/F2 |
BT-12M7.0AT | 12 | 7.0 | 151 | 66 | 95 | 100 | 2.11 | F1/F2 |
BT-12M7.5AC | 12 | 7.5 | 151 | 66 | 95 | 100 | 2.15 | F1/F2 |
BT-12M8.0AC | 12 | 8.0 | 151 | 66 | 95 | 100 | 2.4 | F1/F2 |
BT-12M8.5AC | 12 | 8.5 | 151 | 66 | 95 | 100 | 2.55 | F1/F2 |
BT-12M10AC | 12 | 10 | 151 | 98 | 95 | 99 | 3.17 | F1/F2 |
BT-12M12AC | 12 | 12 | 151 | 98 | 95 | 99 | 3.4 | F1/F2 |
BT-12M14AC | 12 | 14 | 151 | 98 | 95 | 99 | 3.75 | F1/F2 |
BT-12M17AC | 12 | 17 | 181 | 77 | 167 | 167 | 5.15 | F6/F38 |
BT-12M22AC | 12 | 22 | 181 | 78 | 175 | 175 | 6.04 | F26 |
BT-12M24AT(W) | 12 | 24 | 174 | 166 | 126 | 126 | 7.65 | F7/F40 |
BT-12M24AT(L) | 12 | 24 | 165 | 126 | 174 | 174 | 7.62 | F6/F38 |
BT-12M33AC | 12 | 33 | 197 | 131 | 154 | 165 | 10.3 | F8/F20 |
有关资料显示,一节一号电池烂在地里,能使1平方米的土壤失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。在对自然环境威胁大的几种物质中,电池里就包含了汞、铅、镉等多种,若将废旧电池混入生活垃圾一起填埋,或者随手丢弃,渗出的汞及重金属物质就会渗透于土壤、污染地下水,进而进入鱼类、农作物中,破坏人类的生存环境,间接威胁到人类的健康。
人体一旦吸收这些重金属以后,会出现哪些病症呢?据有关专家介绍,汞是一种毒性很强的重金属,对人体中枢神经的破坏力很大,上世纪五十年代发生在日本的震惊中外的水俣病就是由于汞污染造成的。目前我国生产的含汞碱性干电池的汞含量达1%-5%,中性干电池的汞含量为0.025%,我国电池生产消耗的汞每年就达几十吨之多。镉在人体内极易引起慢性中毒,主要病症是肺气肿、骨质软化、贫血,很可能使人体瘫痪。而铅进入人体后难排泄,它干扰肾功能、生殖功能。
专家们认为,由于电池污染具有周期长、隐蔽性大等特点,其潜在危害相当严重,处理不当还会造成二次污染。据杨毅夫博士介绍,我国沿海某省的一些农民在回收铅酸蓄电池中的铅时,因为回收处理不当,把含有铅和硫酸的废液倒掉,不仅造成了铅中毒,而且使当地农作物无法生长。
如何及时安全地回收和处理废电池,已日益突出地摆在人们面前。