CHIPNOVA 品牌
生产厂家厂商性质
厦门市所在地
业界最高分辨率
1.MEMS加工工艺,芯片视窗区域的氮化硅膜厚度最薄可达10nm。
2.芯片封装采用键合内封以及环氧树脂外封双保险方式,使芯片间的夹层最薄仅约100~200nm,超薄夹层大幅减少对电子束的干扰,可清晰观察样品的原子排列情况,液相环境可实现原子级分辨。
3.经过特殊设计的芯片视窗形状,可避免氮化硅膜鼓起导致液层增厚而影响分辨率。
高安全性
1.市面常见的其他品牌液体样品杆,由于受自身液体池芯片设计方案制约,只能通过液体泵产生的巨大压力推动大流量液体流经样品台及芯片外围区域,有液体大量泄露的安全隐患。其液体主要靠扩散效应进入芯片中间的纳米孔道,芯片观察窗里并无真实流量流速控制。
2.采用纳流控技术,通过压电微控系统进行流体微分控制,实现纳升级微量流体输送,原位纳流控系统及样品杆中冗余的液体量仅有微升级别,有效保证电镜安全。
3.采用高分子膜面接触密封技术,相比于o圈密封,增大了密封接触面积,有效减小渗漏风险。
4.采用超高温镀膜技术,芯片视窗区域的氮化硅膜具有耐高温低应力耐压耐腐蚀耐辐照等优点。
多场耦合技术
可在液相环境中实现光、电、热、流体多场耦合。
智能化软件和自动化设备
1.人机分离,软件远程控制实验条件,全程自动记录实验细节数据,便于总结与回顾。
2.全流程配备精密自动化设备,协助人工操作,提高实验效率。
团队优势
1.团队带头人在原位液相TEM发展初期即参与研发并完善该方法。
2.独立设计原位芯片,掌握芯片核心工艺,拥有多项芯片patent。
3.团队20余人从事原位液相TEM研究,可提供多个研究方向的原位实验技术支持。
类别 | 项目 | 参数 |
基本参数 | 杆体材质 | 高强度钛合金 |
视窗膜厚 | 标配20nm(可升级10nm) | |
适用电镜 | Thermo Fisher/FEI, JEOL, Hitachi | |
适用极靴 | ST, XT, T, BioT, HRP, HTP, CRP | |
(HR)TEM/STEM | 支持 | |
(HR)EDS/EELS/SAED | 支持 | |
倾转角 | α=±20°(实际范围取决于透射电镜和极靴型号 | |
液层厚度 | 100~200 nm(自行组装确定厚度) |
(a, b) TEM images of CeO2 and MoO3–CeOx;
(c) elemental distributions of Mo, Ce, and O in MoO3–CeOx;
(d, e) HRTEM images of MoO3–CeOx and size distribution of MoO3;
(f) HRTEM image and FFT pattern of the CeOx support
CeOx-supported monodispersed MoO3 clusters for high-efficiency electrochemical nitrogen reduction under
ambient condition
Journal of Energy Chemistry 56 (2021) 186-192.
In situ atomic resolution HRTEM observation on the behaviors of sulfobetaine molecules at the solid-liquid interface under external electric field and the formation of the waterproof layer around the
negative electrode surface.
Controlling Interfacial Structural Evolution in Aqueous Electrolyte via Anti-Electrolytic Zwitterionic Waterproofing.
Adv. Funct. Mater. 2022, 2207140.
SAED patterns of NiS2/PtNi NWs (a) and Ni3S2/PtNi NWs (d),
high-resolution HAADF–STEM images of NiS2/PtNi NWs heterostructures (b, c) and Ni3S2/PtNi NWs heterostructures (e, f)
Microstrain Engineered NixS2/PtNi Porous Nanowires for Boosting Hydrogen Evolution Activity
Energy Fuels 2021, 35, (8) 6928–6934.
Comparative illustration of graphite layers and atomic channels. Schematic illustration of (a) typical Li+ intercalation in graphite layers and (b) superdense Li diffusion in atomic channels.
Efficient diffusion of superdense lithium via atomic channels for dendrite-free lithium–metal batteries
Energy & Environmental Science 2022, 15 (1), 196-205.